
Package: simstudy (via r-universe)
August 28, 2024

Type Package

Title Simulation of Study Data

Version 0.8.1.9000

Date 2024-07-29

Description Simulates data sets in order to explore modeling
techniques or better understand data generating processes. The
user specifies a set of relationships between covariates, and
generates data based on these specifications. The final data
sets can represent data from randomized control trials,
repeated measure (longitudinal) designs, and cluster randomized
trials. Missingness can be generated using various mechanisms
(MCAR, MAR, NMAR).

License GPL-3

URL https://github.com/kgoldfeld/simstudy,

https://kgoldfeld.github.io/simstudy/,

https://kgoldfeld.github.io/simstudy/dev/

BugReports https://github.com/kgoldfeld/simstudy/issues

Depends R (>= 3.3.0)

Imports data.table, glue, methods, mvnfast, Rcpp, backports, fastglm

Suggests covr, dplyr, formatR, gee, ggplot2, grid, gridExtra,
hedgehog, knitr, magrittr, Matrix, mgcv, ordinal, pracma,
rmarkdown, scales, splines, survival, testthat, gtsummary,
broom.helpers, survminer, katex, dirmult, rms

LinkingTo Rcpp, pbv (>= 0.4-22), fastglm

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.2

Repository https://kgoldfeld.r-universe.dev

RemoteUrl https://github.com/kgoldfeld/simstudy

RemoteRef HEAD

RemoteSha df880328cb1a0cd7344ce66a9efc1f0ce7e40368

1

https://github.com/kgoldfeld/simstudy
https://kgoldfeld.github.io/simstudy/
https://kgoldfeld.github.io/simstudy/dev/
https://github.com/kgoldfeld/simstudy/issues

2 Contents

Contents
addColumns . 3
addCompRisk . 4
addCondition . 5
addCorData . 6
addCorFlex . 8
addCorGen . 10
addDataDensity . 12
addMarkov . 13
addMultiFac . 15
addPeriods . 16
addSynthetic . 17
betaGetShapes . 18
blockDecayMat . 19
blockExchangeMat . 21
defCondition . 23
defData . 24
defDataAdd . 26
defMiss . 27
defRead . 28
defReadAdd . 29
defReadCond . 30
defRepeat . 31
defRepeatAdd . 33
defSurv . 34
delColumns . 35
distributions . 36
gammaGetShapeRate . 37
genCatFormula . 38
genCluster . 39
genCorData . 40
genCorFlex . 41
genCorGen . 42
genCorMat . 44
genData . 45
genDataDensity . 47
genDummy . 47
genFactor . 48
genFormula . 49
genMarkov . 50
genMiss . 52
genMixFormula . 53
genMultiFac . 54
genNthEvent . 55
genObs . 56
genOrdCat . 57
genSpline . 59

addColumns 3

genSurv . 61
genSynthetic . 62
iccRE . 63
logisticCoefs . 65
mergeData . 66
negbinomGetSizeProb . 67
simstudy-deprecated . 68
survGetParams . 68
survParamPlot . 69
trimData . 70
trtAssign . 71
trtObserve . 72
trtStepWedge . 73
updateDef . 74
updateDefAdd . 76
viewBasis . 77
viewSplines . 78

Index 79

addColumns Add columns to existing data set

Description

Add columns to existing data set

Usage

addColumns(dtDefs, dtOld, envir = parent.frame())

Arguments

dtDefs Name of definitions for added columns

dtOld Name of data table that is to be updated

envir Environment the data definitions are evaluated in. Defaults to base::parent.frame.

Value

an updated data.table that contains the added simulated data

4 addCompRisk

Examples

New data set

def <- defData(varname = "xNr", dist = "nonrandom", formula = 7, id = "idnum")
def <- defData(def, varname = "xUni", dist = "uniform", formula = "10;20")

dt <- genData(10, def)

Add columns to dt

def2 <- defDataAdd(varname = "y1", formula = 10, variance = 3)
def2 <- defDataAdd(def2, varname = "y2", formula = .5, dist = "binary")
def2

dt <- addColumns(def2, dt)
dt

addCompRisk Generating single competing risk survival variable

Description

Generating single competing risk survival variable

Usage

addCompRisk(
dtName,
events,
timeName,
censorName = NULL,
eventName = "event",
typeName = "type",
keepEvents = FALSE,
idName = "id"

)

Arguments

dtName Name of complete data set to be updated

events Vector of column names that include time-to-event outcome measures

timeName A string to indicate the name of the combined competing risk time-to-event out-
come that reflects the minimum observed value of all time-to-event outcomes.

censorName The name of a time-to-event variable that is the censoring variable. Must be one
of the "events" names. Defaults to NULL.

addCondition 5

eventName The name of the new numeric/integer column representing the competing event
outcomes. If censorName is specified, the integer value for that event will be 0.
Defaults to "event", but will be ignored if timeName is NULL.

typeName The name of the new character column that will indicate the event type. The
type will be the unique variable names in survDefs. Defaults to "type", but will
be ignored if timeName is NULL.

keepEvents Indicator to retain original "events" columns. Defaults to FALSE.

idName Name of id field in existing data set.

Value

An updated data table

Examples

d1 <- defData(varname = "x1", formula = .5, dist = "binary")
d1 <- defData(d1, "x2", .5, dist = "binary")

dS <- defSurv(varname = "reinc", formula = "-10 - 0.6*x1 + 0.4*x2", shape = 0.3)
dS <- defSurv(dS, "death", "-6.5 + 0.3*x1 - 0.5*x2", shape = 0.5)
dS <- defSurv(dS, "censor", "-7", shape = 0.55)

dd <- genData(10, d1)
dd <- genSurv(dd, dS)

addCompRisk(dd, c("reinc","death", "censor"), timeName = "time",
censorName = "censor", keepEvents = FALSE)

addCondition Add a single column to existing data set based on a condition

Description

Add a single column to existing data set based on a condition

Usage

addCondition(condDefs, dtOld, newvar, envir = parent.frame())

Arguments

condDefs Name of definitions for added column

dtOld Name of data table that is to be updated

newvar Name of new column to add

envir Environment the data definitions are evaluated in. Defaults to base::parent.frame.

6 addCorData

Value

An updated data.table that contains the added simulated data

Examples

New data set

def <- defData(varname = "x", dist = "categorical", formula = ".33;.33")
def <- defData(def, varname = "y", dist = "uniform", formula = "-5;5")

dt <- genData(1000, def)

Define conditions

defC <- defCondition(
condition = "x == 1", formula = "5 + 2*y-.5*y^2",
variance = 1, dist = "normal"

)
defC <- defCondition(defC,

condition = "x == 2",
formula = "3 - 3*y + y^2", variance = 2, dist = "normal"

)
defC <- defCondition(defC,

condition = "x == 3",
formula = "abs(y)", dist = "poisson"

)

Add column

dt <- addCondition(defC, dt, "NewVar")

Plot data

library(ggplot2)

ggplot(data = dt, aes(x = y, y = NewVar, group = x)) +
geom_point(aes(color = factor(x)))

addCorData Add correlated data to existing data.table

Description

Add correlated data to existing data.table

Usage

addCorData(
dtOld,

addCorData 7

idname,
mu,
sigma,
corMatrix = NULL,
rho,
corstr = "ind",
cnames = NULL

)

Arguments

dtOld Data table that is the new columns will be appended to.

idname Character name of id field, defaults to "id".

mu A vector of means. The length of mu must be nvars.

sigma Standard deviation of variables. If standard deviation differs for each variable,
enter as a vector with the same length as the mean vector mu. If the standard
deviation is constant across variables, as single value can be entered.

corMatrix Correlation matrix can be entered directly. It must be symmetrical and posi-
tive semi-definite. It is not a required field; if a matrix is not provided, then a
structure and correlation coefficient rho must be specified.

rho Correlation coefficient, -1 <= rho <= 1. Use if corMatrix is not provided.

corstr Correlation structure of the variance-covariance matrix defined by sigma and
rho. Options include "ind" for an independence structure, "cs" for a compound
symmetry structure, and "ar1" for an autoregressive structure.

cnames Explicit column names. A single string with names separated by commas. If no
string is provided, the default names will be V#, where # represents the column.

Value

The original data table with the additional correlated columns

Examples

def <- defData(varname = "xUni", dist = "uniform", formula = "10;20", id = "myID")
def <- defData(def,

varname = "xNorm", formula = "xUni * 2", dist = "normal",
variance = 8

)

dt <- genData(250, def)

mu <- c(3, 8, 15)
sigma <- c(1, 2, 3)

dtAdd <- addCorData(dt, "myID",
mu = mu, sigma = sigma,
rho = .7, corstr = "cs"

)

8 addCorFlex

dtAdd

round(var(dtAdd[, .(V1, V2, V3)]), 3)
round(cor(dtAdd[, .(V1, V2, V3)]), 2)

dtAdd <- addCorData(dt, "myID",
mu = mu, sigma = sigma,
rho = .7, corstr = "ar1"

)
round(cor(dtAdd[, .(V1, V2, V3)]), 2)

corMat <- matrix(c(1, .2, .8, .2, 1, .6, .8, .6, 1), nrow = 3)

dtAdd <- addCorData(dt, "myID",
mu = mu, sigma = sigma,
corMatrix = corMat

)
round(cor(dtAdd[, .(V1, V2, V3)]), 2)

addCorFlex Create multivariate (correlated) data - for general distributions

Description

Create multivariate (correlated) data - for general distributions

Usage

addCorFlex(
dt,
defs,
rho = 0,
tau = NULL,
corstr = "cs",
corMatrix = NULL,
envir = parent.frame()

)

Arguments

dt Data table that will be updated.

defs Field definition table created by function defDataAdd.

rho Correlation coefficient, -1 <= rho <= 1. Use if corMatrix is not provided.

tau Correlation based on Kendall’s tau. If tau is specified, then it is used as the
correlation even if rho is specified. If tau is NULL, then the specified value of
rho is used, or rho defaults to 0.

addCorFlex 9

corstr Correlation structure of the variance-covariance matrix defined by sigma and
rho. Options include "cs" for a compound symmetry structure and "ar1" for an
autoregressive structure. Defaults to "cs".

corMatrix Correlation matrix can be entered directly. It must be symmetrical and posi-
tive semi-definite. It is not a required field; if a matrix is not provided, then a
structure and correlation coefficient rho must be specified.

envir Environment the data definitions are evaluated in. Defaults to base::parent.frame.

Value

data.table with added column(s) of correlated data

Examples

defC <- defData(
varname = "nInds", formula = 50, dist = "noZeroPoisson",
id = "idClust"

)

dc <- genData(10, defC)
Normal only

dc <- addCorData(dc,
mu = c(0, 0, 0, 0), sigma = c(2, 2, 2, 2), rho = .2,
corstr = "cs", cnames = c("a", "b", "c", "d"),
idname = "idClust"

)

di <- genCluster(dc, "idClust", "nInds", "id")

defI <- defDataAdd(
varname = "A", formula = "-1 + a", variance = 3,
dist = "normal"

)
defI <- defDataAdd(defI,

varname = "B", formula = "4.5 + b", variance = .5,
dist = "normal"

)
defI <- defDataAdd(defI,

varname = "C", formula = "5*c", variance = 3,
dist = "normal"

)
defI <- defDataAdd(defI,

varname = "D", formula = "1.6 + d", variance = 1,
dist = "normal"

)

Generate new data

di <- addCorFlex(di, defI, rho = 0.4, corstr = "cs")

Check correlations by cluster

10 addCorGen

for (i in 1:nrow(dc)) {
print(cor(di[idClust == i, list(A, B, C, D)]))

}

Check global correlations - should not be as correlated
cor(di[, list(A, B, C, D)])

addCorGen Create multivariate (correlated) data - for general distributions

Description

Create multivariate (correlated) data - for general distributions

Usage

addCorGen(
dtOld,
nvars = NULL,
idvar = "id",
rho = NULL,
corstr = NULL,
corMatrix = NULL,
dist,
param1,
param2 = NULL,
cnames = NULL,
method = "copula",
...

)

Arguments

dtOld The data set that will be augmented. If the data set includes a single record per
id, the new data table will be created as a "wide" data set. If the original data set
includes multiple records per id, the new data set will be in "long" format.

nvars The number of new variables to create for each id. This is only applicable when
the data are generated from a data set that includes one record per id.

idvar String variable name of column represents individual level id for correlated data.

rho Correlation coefficient, -1 <= rho <= 1. Use if corMatrix is not provided.

corstr Correlation structure of the variance-covariance matrix defined by sigma and
rho. Options include "cs" for a compound symmetry structure and "ar1" for an
autoregressive structure.

corMatrix Correlation matrix can be entered directly. It must be symmetrical and posi-
tive semi-definite. It is not a required field; if a matrix is not provided, then a
structure and correlation coefficient rho must be specified.

addCorGen 11

dist A string indicating "normal", "binary", "poisson" or "gamma".

param1 A string that represents the column in dtOld that contains the parameter for the
mean of the distribution. In the case of the uniform distribution the column
specifies the minimum.

param2 A string that represents the column in dtOld that contains a possible second
parameter for the distribution. For the normal distribution, this will be the vari-
ance; for the gamma distribution, this will be the dispersion; and for the uniform
distribution, this will be the maximum.

cnames Explicit column names. A single string with names separated by commas. If no
string is provided, the default names will be V#, where # represents the column.

method Two methods are available to generate correlated data. (1) "copula" uses the
multivariate Gaussian copula method that is applied to all other distributions;
this applies to all available distributions. (2) "ep" uses an algorithm developed
by Emrich and Piedmonte (1991).

... May include additional arguments that have been deprecated and are no longer
used.

Details

The original data table can come in one of two formats: a single row per idvar (where data are
ungrouped) or multiple rows per idvar (in which case the data are grouped or clustered). The
structure of the arguments depends on the format of the data.

In the case of ungrouped data, there are two ways to specify the number of correlated variables and
the covariance matrix. In approach (1), nvars needs to be specified along with rho and corstr. In
approach (2), corMatrix may be specified by identifying a single square n x n covariance matrix.
The number of new variables generated for each record will be n. If nvars, rho, corstr, and corMa-
trix are all specified, the data will be generated based on the information provided in the covariance
matrix alone. In both (1) and (2), the data will be returned in a wide format.

In the case of grouped data, where there are G groups, there are also two ways to proceed. In both
cases, the number of new variables to be generated may vary by group, and will be determined by
the number of records in each group, ni, i ∈ {1, ..., G} (i.e., the number of records that share the
same value of idvar). nvars is not used in grouped data. In approach (1), the arguments rho and
corstr may both be specified to determine the structure of the covariance matrix. In approach (2),
the argument corMatrix may be specified. corMatrix can be a single matrix with dimensions n x n
if ni = n for all i. However, if the sample sizes of each group vary (i.e., ni ̸= nj for some groups i
and j), corMatrix must be a list of covariance matrices with a length G; each covariance matrix in
the list will have dimensions ni x ni, i ∈ {1, ..., G}. In the case of grouped data, the new data will
be returned in long format (i.e., one new column only).

Value

Original data.table with added column(s) of correlated data

References

Emrich LJ, Piedmonte MR. A Method for Generating High-Dimensional Multivariate Binary Vari-
ates. The American Statistician 1991;45:302-4.

12 addDataDensity

Examples

Ungrouped data

cMat <- genCorMat(nvars = 4, rho = .2, corstr = "ar1", nclusters = 1)

def <-
defData(varname = "xbase", formula = 5, variance = .4, dist = "gamma") |>
defData(varname = "lambda", formula = ".5 + .1*xbase", dist = "nonrandom", link = "log") |>
defData(varname = "n", formula = 3, dist = "noZeroPoisson")

dd <- genData(101, def, id = "cid")

Specify with nvars, rho, and corstr

addCorGen(
dtOld = dd, idvar = "cid", nvars = 3, rho = .7, corstr = "cs",
dist = "poisson", param1 = "lambda"

)

Specify with covMatrix

addCorGen(
dtOld = dd, idvar = "cid", corMatrix = cMat,
dist = "poisson", param1 = "lambda"

)

Grouped data

cMats <- genCorMat(nvars = dd$n, rho = .5, corstr = "cs", nclusters = nrow(dd))

dx <- genCluster(dd, "cid", "n", "id")

Specify with nvars, rho, and corstr

addCorGen(
dtOld = dx, idvar = "cid", rho = .8, corstr = "ar1", dist = "poisson", param1 = "xbase"

)

Specify with covMatrix

addCorGen(
dtOld = dx, idvar = "cid", corMatrix = cMats, dist = "poisson", param1 = "xbase"

)

addDataDensity Add data from a density defined by a vector of integers

Description

Data are generated from an a density defined by a vector of integers.

addMarkov 13

Usage

addDataDensity(dtOld, dataDist, varname, uselimits = FALSE)

Arguments

dtOld Name of data table that is to be updated.

dataDist Vector that defines the desired density.

varname Name of variable name.

uselimits Indicator to use minimum and maximum of input data vector as limits for sam-
pling. Defaults to FALSE, in which case a smoothed density that extends beyond
the limits is used.

Value

A data table with the generated data.

Examples

def <- defData(varname = "x1", formula = 5, dist = "poisson")

data_dist <- data_dist <- c(1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 7, 7, 7, 8, 9, 10, 10)

dd <- genData(500, def)
dd <- addDataDensity(dd, data_dist, varname = "x2")
dd <- addDataDensity(dd, data_dist, varname = "x3", uselimits = TRUE)

addMarkov Add Markov chain

Description

Generate a Markov chain for n individuals or units by specifying a transition matrix.

Usage

addMarkov(
dd,
transMat,
chainLen,
wide = FALSE,
id = "id",
pername = "period",
varname = "state",
widePrefix = "S",
start0lab = NULL,
trimvalue = NULL

)

14 addMarkov

Arguments

dd data.table with a unique identifier

transMat Square transition matrix where the sum of each row must equal 1. The dimen-
sions of the matrix equal the number of possible states.

chainLen Length of each chain that will be generated for each chain; minimum chain
length is 2.

wide Logical variable (TRUE or FALSE) indicating whether the resulting data table
should be returned in wide or long format. The wide format includes all el-
ements of a chain on a single row; the long format includes each element of
a chain in its own row. The default is wide = FALSE, so the long format is
returned by default.

id Character string that represents name of "id" field. Defaults to "id".

pername Character string that represents the variable name of the chain sequence in the
long format. Defaults "period",

varname Character string that represents the variable name of the state in the long format.
Defaults to "state".

widePrefix Character string that represents the variable name prefix for the state fields in
the wide format. Defaults to "S".

start0lab Character string that represents name of the integer field containing starting state
(State 0) of the chain for each individual. If it is NULL, starting state defaults to
1. Default is NULL.

trimvalue Integer value indicating end state. If trimvalue is not NULL, all records after the
first instance of state = trimvalue will be deleted.

Value

A data table with n rows if in wide format, or n by chainLen rows if in long format.

Examples

def1 <- defData(varname = "x1", formula = 0, variance = 1)
def1 <- defData(def1, varname = "x2", formula = 0, variance = 1)
def1 <- defData(def1,

varname = "S0", formula = ".6;.3;.1",
dist = "categorical"

)

dd <- genData(20, def1)

Transition matrix P

P <- t(matrix(c(
0.7, 0.2, 0.1,
0.5, 0.3, 0.2,
0.0, 0.7, 0.3

),
nrow = 3

addMultiFac 15

))

d1 <- addMarkov(dd, P, chainLen = 3)
d2 <- addMarkov(dd, P, chainLen = 5, wide = TRUE)
d3 <- addMarkov(dd, P, chainLen = 5, wide = TRUE, start0lab = "S0")
d4 <- addMarkov(dd, P, chainLen = 5, start0lab = "S0", trimvalue = 3)

addMultiFac Add multi-factorial data

Description

Add multi-factorial data

Usage

addMultiFac(dtOld, nFactors, levels = 2, coding = "dummy", colNames = NULL)

Arguments

dtOld data.table that is to be modified

nFactors Number of factors (columns) to generate.

levels Vector or scalar. If a vector is specified, it must be the same length as nFatctors.
Each value of the vector represents the number of levels of each corresponding
factor. If a scalar is specified, each factor will have the same number of levels.
The default is 2 levels for each factor.

coding String value to specify if "dummy" or "effect" coding is used. Defaults to
"dummy".

colNames A vector of strings, with a length of nFactors. The strings represent the name
for each factor.

Value

A data.table that contains the added simulated data. Each new column contains an integer.

Examples

defD <- defData(varname = "x", formula = 0, variance = 1)

DT <- genData(360, defD)
DT <- addMultiFac(DT, nFactors = 3, levels = c(2, 3, 3), colNames = c("A", "B", "C"))
DT
DT[, .N, keyby = .(A, B, C)]

DT <- genData(300, defD)
DT <- addMultiFac(DT, nFactors = 3, levels = 2)
DT[, .N, keyby = .(Var1, Var2, Var3)]

16 addPeriods

addPeriods Create longitudinal/panel data

Description

Create longitudinal/panel data

Usage

addPeriods(
dtName,
nPeriods = NULL,
idvars = "id",
timevars = NULL,
timevarName = "timevar",
timeid = "timeID",
perName = "period",
periodVec = NULL

)

Arguments

dtName Name of existing data table

nPeriods Number of time periods for each record

idvars Names of index variables (in a string vector) that will be repeated during each
time period

timevars Names of time dependent variables. Defaults to NULL.

timevarName Name of new time dependent variable

timeid Variable name for new index field. Defaults to "timevar"

perName Variable name for period field. Defaults to "period"

periodVec Vector of period times. Defaults to NULL

Details

It is possible to generate longitudinal data with varying numbers of measurement periods as well
as varying time intervals between each measurement period. This is done by defining specific
variables in the data set that define the number of observations per subject and the average interval
time between each observation. nCount defines the number of measurements for an individual;
mInterval specifies the average time between intervals for a subject; and vInterval specifies the
variance of those interval times. If mInterval is not defined, no intervals are used. If vInterval is
set to 0 or is not defined, the interval for a subject is determined entirely by the mean interval. If
vInterval is greater than 0, time intervals are generated using a gamma distribution with specified
mean and dispersion. If either nPeriods or timevars is specified, that will override any nCount,
mInterval, and vInterval data.

addSynthetic 17

periodVec is used to specify measurement periods that are different the default counting variables.
If periodVec is not specified, the periods default to 0, 1, ... n-1, with n periods. If periodVec is
specified as c(x_1, x_2, ... x_n), then x_1, x_2, ... x_n represent the measurement periods.

Value

An updated data.table that that has multiple rows per observation in dtName

Examples

tdef <- defData(varname = "T", dist = "binary", formula = 0.5)
tdef <- defData(tdef, varname = "Y0", dist = "normal", formula = 10, variance = 1)
tdef <- defData(tdef, varname = "Y1", dist = "normal", formula = "Y0 + 5 + 5 * T", variance = 1)
tdef <- defData(tdef, varname = "Y2", dist = "normal", formula = "Y0 + 10 + 5 * T", variance = 1)

dtTrial <- genData(5, tdef)
dtTrial

dtTime <- addPeriods(dtTrial,
nPeriods = 3, idvars = "id",
timevars = c("Y0", "Y1", "Y2"), timevarName = "Y"

)
dtTime

Varying # of periods and intervals - need to have variables
called nCount and mInterval

def <- defData(varname = "xbase", dist = "normal", formula = 20, variance = 3)
def <- defData(def, varname = "nCount", dist = "noZeroPoisson", formula = 6)
def <- defData(def, varname = "mInterval", dist = "gamma", formula = 30, variance = .01)
def <- defData(def, varname = "vInterval", dist = "nonrandom", formula = .07)

dt <- genData(200, def)
dt[id %in% c(8, 121)]

dtPeriod <- addPeriods(dt)
dtPeriod[id %in% c(8, 121)] # View individuals 8 and 121 only

addSynthetic Add synthetic data to existing data set

Description

This function generates synthetic data from an existing data.table and adds it to another (simstudy)
data.table.

Usage

addSynthetic(dtOld, dtFrom, vars = NULL, id = "id")

18 betaGetShapes

Arguments

dtOld data.table that is to be modified

dtFrom Data table that contains the source data

vars A vector of string names specifying the fields that will be sampled. The default
is that all variables will be selected.

id A string specifying the field that serves as the record id. The default field is "id".

Details

Add synthetic data

Value

A data.table that contains the added synthetic data.

Examples

Create fake "real" data set - this is the source of the synthetic data

d <- defData(varname = "a", formula = 3, variance = 1, dist = "normal")
d <- defData(d, varname = "b", formula = 5, dist = "poisson")
d <- defData(d, varname = "c", formula = 0.3, dist = "binary")
d <- defData(d, varname = "d", formula = "a + b + 3*c", variance = 2, dist = "normal")

Create synthetic data set from "observed" data set A (normally this
would be an actual external data set):

A <- genData(1000, d)

Generate new simstudy data set (using 'def')

def <- defData(varname = "x", formula = 0, variance = 5)
S <- genData(120, def)

Create synthetic data from 'A' and add to simulated data in 'S'

S <- addSynthetic(dtOld = S, dtFrom = A, vars = c("b", "d"))

betaGetShapes Convert beta mean and precision parameters to two shape parameters

Description

Convert beta mean and precision parameters to two shape parameters

Usage

betaGetShapes(mean, precision)

blockDecayMat 19

Arguments

mean The mean of a beta distribution

precision The precision parameter (phi) of a beta distribution

Details

In simstudy, users specify the beta distribution as a function of two parameters - a mean and preci-
sion, where 0 < mean < 1 and precision > 0. In this case, the variance of the specified distribution is
(mean)*(1-mean)/(1+precision). The base R function rbeta uses the two shape parameters to spec-
ify the beta distribution. This function converts the mean and precision into the shape1 and shape2
parameters.

Value

A list that includes the shape parameters of the beta distribution

Examples

set.seed(12345)
mean <- 0.3
precision <- 1.6
rs <- betaGetShapes(mean, precision)
c(rs$shape1, rs$shape2)
vec <- rbeta(1000, shape1 = rs$shape1, shape2 = rs$shape2)
(estMoments <- c(mean(vec), var(vec)))
(theoryMoments <- c(mean, mean * (1 - mean) / (1 + precision)))
(theoryMoments <- with(rs, c(

shape1 / (shape1 + shape2),
(shape1 * shape2) / ((shape1 + shape2)^2 * (1 + shape1 + shape2))

)))

blockDecayMat Create a block correlation matrix

Description

The function genBlockMat() generates correlation matrices that can accommodate clustered obser-
vations over time where the within-cluster between-individual correlation in the same time period
can be different from the within-cluster between-individual correlation across time periods.The ma-
trix generated here can be used in function addCorGen().

Usage

blockDecayMat(ninds, nperiods, rho_w, r, pattern = "xsection", nclusters = 1)

20 blockDecayMat

Arguments

ninds The number of units (individuals) in each cluster in each period.
nperiods The number periods that data are observed.
rho_w The within-period/between-individual correlation coefficient between -1 and 1.
r The decay parameter if correlation declines over time, and can have values of

"exp" or "prop". See details.
pattern A string argument with options "xsection" (default) or "cohort".
nclusters An integer that indicates the number of matrices that will be generated.

Details

Two general decay correlation structures are currently supported: a *cross-sectional* exchangeable
structure and a *closed cohort* exchangeable structure. In the *cross-sectional* case, individuals
or units in each time period are distinct. In the *closed cohort* structure, individuals or units are
repeated in each time period. The desired structure is specified using pattern, which defaults to
"xsection" if not specified.

This function can generate correlation matrices of different sizes, depending on the combination of
arguments provided. A single matrix will be generated when nclusters == 1 (the default), and a
list of matrices of matrices will be generated when nclusters > 1.

If nclusters > 1, the length of ninds will depend on if sample sizes will vary by cluster and/or
period. There are three scenarios, and function evaluates the length of ninds to determine which
approach to take:

• if the sample size is the same for all clusters in all periods, ninds will be a single value (i.e.,
length = 1).

• if the sample size differs by cluster but is the same for each period within each cluster each
period, then ninds will have a value for each cluster (i.e., length = nclusters).

• if the sample size differs across clusters and across periods within clusters, ninds will have a
value for each cluster-period combination (i.e., length = nclusters x nperiods). This option
is only valid when pattern = "xsection".

In addition, rho_w and r can be specified as a single value (in which case they are consistent across
all clusters) or as a vector of length nclusters, in which case either one or both of these parameters
can vary by cluster.

See vignettes for more details.

Value

A single correlation matrix of size nvars x nvars, or a list of matrices of potentially different sizes
with length indicated by nclusters.

A single correlation matrix or a list of matrices of potentially different sizes with length indicated
by nclusters.

References

Li et al. Mixed-effects models for the design and analysis of stepped wedge cluster randomized tri-
als: An overview. Statistical Methods in Medical Research. 2021;30(2):612-639. doi:10.1177/0962280220932962

blockExchangeMat 21

See Also

blockExchangeMat and addCorGen

Examples

blockDecayMat(ninds = 4, nperiods = 3, rho_w = .8, r = .9)
blockDecayMat(ninds = 4, nperiods = 3, rho_w = .8, r = .9, pattern = "cohort")

blockDecayMat(ninds = 2, nperiods = 3, rho_w = .8, r = .9, pattern = "cohort", nclusters=2)
blockDecayMat(ninds = c(2, 3), nperiods = 3, rho_w = c(.8,0.7), r = c(.9,.8),

pattern = "cohort", nclusters=2)
blockDecayMat(ninds = c(2, 3, 4, 4, 2, 1), nperiods = 3, rho_w = .8, r = .9, nclusters=2)

blockExchangeMat Create a block correlation matrix with exchangeable structure

Description

The function blockExchangeMat generates exchangeable correlation matrices that can accommo-
date clustered observations over time where the within-cluster between-individual correlation in
the same time period can be different from the within-cluster between-individual correlation across
time periods. The matrix generated here can be used in function addCorGen.

Usage

blockExchangeMat(
ninds,
nperiods,
rho_w,
rho_b = 0,
rho_a = NULL,
pattern = "xsection",
nclusters = 1

)

Arguments

ninds The number of units (individuals) in each cluster in each period.
nperiods The number periods that data are observed.
rho_w The within-period/between-individual correlation coefficient between -1 and 1.
rho_b The between-period/between-individual correlation coefficient between -1 and

1.
rho_a The between-period/within-individual auto-correlation coefficient between -1

and 1.
pattern A string argument with options "xsection" (default) or "cohort".
nclusters An integer that indicates the number of matrices that will be generated.

22 blockExchangeMat

Details

Two general exchangeable correlation structures are currently supported: a *cross-sectional* ex-
changeable structure and a *closed cohort* exchangeable structure. In the *cross-sectional* case,
individuals or units in each time period are distinct. In the *closed cohort* structure, individuals
or units are repeated in each time period. The desired structure is specified using pattern, which
defaults to "xsection" if not specified. rho_a is the within-individual/unit exchangeable correlation
over time, and can only be used when xsection = FALSE.

This function can generate correlation matrices of different sizes, depending on the combination of
arguments provided. A single matrix will be generated when nclusters == 1 (the default), and a
list of matrices of matrices will be generated when nclusters > 1.

If nclusters > 1, the length of ninds will depend on if sample sizes will vary by cluster and/or
period. There are three scenarios, and function evaluates the length of ninds to determine which
approach to take:

• if the sample size is the same for all clusters in all periods, ninds will be a single value (i.e.,
length = 1).

• if the sample size differs by cluster but is the same for each period within each cluster each
period, then ninds will have a value for each cluster (i.e., length = nclusters).

• if the sample size differs across clusters and across periods within clusters, ninds will have a
value for each cluster-period combination (i.e., length = nclusters x nperiods). This option
is only valid when pattern = "xsection".

In addition, rho_w, rho_b, and rho_a can be specified as a single value (in which case they are
consistent across all clusters) or as a vector of length nclusters, in which case any or all of these
parameters can vary by cluster.

See vignettes for more details.

Value

A single correlation matrix or a list of matrices of potentially different sizes with length indicated
by nclusters.

References

Li et al. Mixed-effects models for the design and analysis of stepped wedge cluster randomized tri-
als: An overview. Statistical Methods in Medical Research. 2021;30(2):612-639. doi:10.1177/0962280220932962

See Also

blockDecayMat and addCorGen

Examples

blockExchangeMat(ninds = 4, nperiods = 3, rho_w = .8)
blockExchangeMat(ninds = 4, nperiods = 3, rho_w = .8, rho_b = 0.5)
blockExchangeMat(ninds = 4, nperiods = 3, rho_w = .8, rho_b = 0.5, rho_a = 0.7,

pattern = "cohort")
blockExchangeMat(ninds = 2, nperiods = 3, rho_w = .8, rho_b = 0.5, rho_a = 0.7,

defCondition 23

nclusters = 3, pattern = "cohort")
blockExchangeMat(ninds = c(2, 3), nperiods = 3, rho_w = .8, rho_b = 0.5, rho_a = 0.7,

nclusters = 2, pattern="cohort")
blockExchangeMat(ninds = c(2, 3, 4, 4, 2, 1), nperiods = 3, rho_w = .8, rho_b = 0.5,

nclusters = 2)

defCondition Add single row to definitions table of conditions that will be used to
add data to an existing definitions table

Description

Add single row to definitions table of conditions that will be used to add data to an existing defini-
tions table

Usage

defCondition(
dtDefs = NULL,
condition,
formula,
variance = 0,
dist = "normal",
link = "identity"

)

Arguments

dtDefs Name of definition table to be modified. Null if this is a new definition.

condition Formula specifying condition to be checked

formula An R expression for mean (string)

variance Number

dist Distribution. For possibilities, see details

link The link function for the mean, see details

Value

A data.table named dtName that is an updated data definitions table

See Also

distributions

24 defData

Examples

New data set

def <- defData(varname = "x", dist = "noZeroPoisson", formula = 5)
def <- defData(def, varname = "y", dist = "normal", formula = 0, variance = 9)

dt <- genData(10, def)

Add columns to dt

defC <- defCondition(
condition = "x == 1", formula = "5 + 2*y",
variance = 1, dist = "normal"

)

defC <- defCondition(defC,
condition = "x <= 5 & x >= 2", formula = "3 - 2*y",
variance = 1, dist = "normal"

)

defC <- defCondition(defC,
condition = "x >= 6", formula = 1,
variance = 1, dist = "normal"

)

defC

Add conditional column with field name "z"

dt <- addCondition(defC, dt, "z")
dt

defData Add single row to definitions table

Description

Add single row to definitions table

Usage

defData(
dtDefs = NULL,
varname,
formula,
variance = 0,
dist = "normal",
link = "identity",
id = "id"

)

defData 25

Arguments

dtDefs Definition data.table to be modified
varname Name (string) of new variable
formula An R expression for mean (string)
variance Number
dist Distribution. For possibilities, see details
link The link function for the mean, see details
id A string indicating the field name for the unique record identifier

Details

The possible data distributions are: normal, binary, binomial, poisson, noZeroPoisson, uniform,
categorical, gamma, beta, nonrandom, uniformInt, negBinomial, exponential, mixture, trtAssign,
clusterSize, custom.

Value

A data.table named dtName that is an updated data definitions table

See Also

distributions

Examples

extVar <- 2.3
def <- defData(varname = "xNr", dist = "nonrandom", formula = 7, id = "idnum")
def <- defData(def, varname = "xUni", dist = "uniform", formula = "10;20")
def <- defData(def,

varname = "xNorm", formula = "xNr + xUni * 2", dist = "normal",
variance = 8

)
def <- defData(def,

varname = "xPois", dist = "poisson", formula = "xNr - 0.2 * xUni",
link = "log"

)
def <- defData(def, varname = "xCat", formula = "0.3;0.2;0.5", dist = "categorical")
def <- defData(def,

varname = "xGamma", dist = "gamma", formula = "5+xCat",
variance = 1, link = "log"

)
def <- defData(def,

varname = "xBin", dist = "binary", formula = "-3 + xCat",
link = "logit"

)
def <- defData(def,

varname = "external", dist = "nonrandom",
formula = "xBin * log(..extVar)"

)
def

26 defDataAdd

defDataAdd Add single row to definitions table that will be used to add data to an
existing data.table

Description

Add single row to definitions table that will be used to add data to an existing data.table

Usage

defDataAdd(
dtDefs = NULL,
varname,
formula,
variance = 0,
dist = "normal",
link = "identity"

)

Arguments

dtDefs Name of definition table to be modified. Null if this is a new definition.

varname Name (string) of new variable

formula An R expression for mean (string)

variance Number

dist Distribution. For possibilities, see details

link The link function for the mean, see details

Value

A data.table named dtName that is an updated data definitions table

See Also

[distributions]

Examples

New data set

def <- defData(varname = "xNr", dist = "nonrandom", formula = 7, id = "idnum")
def <- defData(def, varname = "xUni", dist = "uniform", formula = "10;20")

dt <- genData(10, def)

Add columns to dt

defMiss 27

def2 <- defDataAdd(varname = "y1", formula = 10, variance = 3)
def2 <- defDataAdd(def2, varname = "y2", formula = .5, dist = "binary")
def2

dt <- addColumns(def2, dt)
dt

defMiss Definitions for missing data

Description

Add single row to definitions table for missing data

Usage

defMiss(
dtDefs = NULL,
varname,
formula,
logit.link = FALSE,
baseline = FALSE,
monotonic = FALSE

)

Arguments

dtDefs Definition data.table to be modified

varname Name of variable with missingness

formula Formula to describe pattern of missingness

logit.link Indicator set to TRUE when the probability of missingness is based on a logit
model.

baseline Indicator is set to TRUE if the variable is a baseline measure and should be
missing throughout an entire observation period. This is applicable to repeated
measures/longitudinal data.

monotonic Indicator set to TRUE if missingness at time t is followed by missingness at all
follow-up times > t.

Value

A data.table named dtName that is an updated data definitions table

See Also

genMiss, genObs

28 defRead

Examples

def1 <- defData(varname = "m", dist = "binary", formula = .5)
def1 <- defData(def1, "u", dist = "binary", formula = .5)
def1 <- defData(def1, "x1", dist = "normal", formula = "20*m + 20*u", variance = 2)
def1 <- defData(def1, "x2", dist = "normal", formula = "20*m + 20*u", variance = 2)
def1 <- defData(def1, "x3", dist = "normal", formula = "20*m + 20*u", variance = 2)

dtAct <- genData(1000, def1)

defM <- defMiss(varname = "x1", formula = .15, logit.link = FALSE)
defM <- defMiss(defM, varname = "x2", formula = ".05 + m * 0.25", logit.link = FALSE)
defM <- defMiss(defM, varname = "x3", formula = ".05 + u * 0.25", logit.link = FALSE)
defM <- defMiss(defM, varname = "u", formula = 1, logit.link = FALSE) # not observed
defM

Generate missing data matrix

missMat <- genMiss(dtName = dtAct, missDefs = defM, idvars = "id")
missMat

Generate observed data from actual data and missing data matrix

dtObs <- genObs(dtAct, missMat, idvars = "id")
dtObs

defRead Read external csv data set definitions

Description

Read external csv data set definitions

Usage

defRead(filen, id = "id")

Arguments

filen String file name, including full path. Must be a csv file.

id string that includes name of id field. Defaults to "id"

Value

A data.table with data set definitions

See Also

[distributions]

defReadAdd 29

Examples

Create temporary external "csv" file

test1 <- c(
"varname,formula,variance,dist,link",
"nr,7, 0,nonrandom,identity",
"x1,.4, 0,binary,identity",
"y1,nr + x1 * 2,8,normal,identity",
"y2,nr - 0.2 * x1,0,poisson, log"

)

tfcsv <- tempfile()
writeLines(test1, tfcsv)

Read external csv file stored in file "tfcsv"

defs <- defRead(tfcsv, id = "myID")
defs

unlink(tfcsv)

Generate data based on external definition

genData(5, defs)

defReadAdd Read external csv data set definitions for adding columns

Description

Read external csv data set definitions for adding columns

Usage

defReadAdd(filen)

Arguments

filen String file name, including full path. Must be a csv file.

Value

A data.table with data set definitions

See Also

[distributions]

30 defReadCond

Examples

Create temporary external "csv" files

test1 <- c(
"varname,formula,variance,dist,link",
"nr,7, 0,nonrandom,identity"

)

tfcsv1 <- tempfile()
writeLines(test1, tfcsv1)

test2 <- c(
"varname,formula,variance,dist,link",
"x1,.4, 0,binary,identity",
"y1,nr + x1 * 2,8,normal,identity",
"y2,nr - 0.2 * x1,0,poisson, log"

)

tfcsv2 <- tempfile()
writeLines(test2, tfcsv2)

Generate data based on external definitions

defs <- defRead(tfcsv1)
dt <- genData(5, defs)
dt

Add additional data based on external definitions

defs2 <- defReadAdd(tfcsv2)
dt <- addColumns(defs2, dt)
dt

unlink(tfcsv1)
unlink(tfcsv2)

defReadCond Read external csv data set definitions for adding columns

Description

Read external csv data set definitions for adding columns

Usage

defReadCond(filen)

Arguments

filen String file name, including full path. Must be a csv file.

defRepeat 31

Value

A data.table with data set definitions

See Also

[distributions]

Examples

Create temporary external "csv" files

test1 <- c(
"varname,formula,variance,dist,link",
"x,0.3;0.4;0.3,0,categorical,identity"

)

tfcsv1 <- tempfile()
writeLines(test1, tfcsv1)

test2 <- c(
"condition,formula,variance,dist,link",
"x == 1, 0.4,0,binary,identity",
"x == 2, 0.6,0,binary,identity",
"x >= 3, 0.8,0,binary,identity"

)

tfcsv2 <- tempfile()
writeLines(test2, tfcsv2)

Generate data based on external definitions

defs <- defRead(tfcsv1)
dt <- genData(2000, defs)
dt

Add column based on

defsCond <- defReadCond(tfcsv2)
dt <- addCondition(defsCond, dt, "y")
dt

dt[, mean(y), keyby = x]

unlink(tfcsv1)
unlink(tfcsv2)

defRepeat Add multiple (similar) rows to definitions table

32 defRepeat

Description

Add multiple (similar) rows to definitions table

Usage

defRepeat(
dtDefs = NULL,
nVars,
prefix,
formula,
variance = 0,
dist = "normal",
link = "identity",
id = "id"

)

Arguments

dtDefs Definition data.table to be modified

nVars Number of new variables to define

prefix Prefix (character) for new variables

formula An R expression for mean (string)

variance Number or formula

dist Distribution. For possibilities, see details

link The link function for the mean, see details

id A string indicating the field name for the unique record identifier

Details

The possible data distributions are: ‘r paste0(.getDists(),collapse = ", ")‘.

Value

A data.table named dtName that is an updated data definitions table

See Also

[distributions]

Examples

def <- defRepeat(
nVars = 4, prefix = "g", formula = "1/3;1/3;1/3",
variance = 0, dist = "categorical"

)
def <- defData(def, varname = "a", formula = "1;1", dist = "trtAssign")
def <- defRepeat(def, 8, "b", formula = "5 + a", variance = 3, dist = "normal")
def <- defData(def, "y", formula = "0.10", dist = "binary")

defRepeatAdd 33

def

defRepeatAdd Add multiple (similar) rows to definitions table that will be used to add
data to an existing data.table

Description

Add multiple (similar) rows to definitions table that will be used to add data to an existing data.table

Usage

defRepeatAdd(
dtDefs = NULL,
nVars,
prefix,
formula,
variance = 0,
dist = "normal",
link = "identity",
id = "id"

)

Arguments

dtDefs Definition data.table to be modified

nVars Number of new variables to define

prefix Prefix (character) for new variables

formula An R expression for mean (string)

variance Number or formula

dist Distribution. For possibilities, see details

link The link function for the mean, see details

id A string indicating the field name for the unique record identifier

Details

The possible data distributions are: ‘r paste0(.getDists(),collapse = ", ")‘.

Value

A data.table named dtName that is an updated data definitions table

See Also

[distributions]

34 defSurv

Examples

def <- defRepeatAdd(
nVars = 4, prefix = "g", formula = "1/3;1/3;1/3",
variance = 0, dist = "categorical"

)
def <- defDataAdd(def, varname = "a", formula = "1;1", dist = "trtAssign")
def <- defRepeatAdd(def, 8, "b", formula = "5 + a", variance = 3, dist = "normal")
def <- defDataAdd(def, "y", formula = "0.10", dist = "binary")

def

defSurv Add single row to survival definitions

Description

Add single row to survival definitions

Usage

defSurv(
dtDefs = NULL,
varname,
formula = 0,
scale = 1,
shape = 1,
transition = 0

)

Arguments

dtDefs Definition data.table to be modified

varname Variable name

formula Covariates predicting survival

scale Scale parameter for the Weibull distribution.

shape The shape of the Weibull distribution. Shape = 1 for an exponential distribution

transition An integer value indicating the starting point for a new specification of the haz-
ard function. It will default to 0 (and must be 0) for the first instance of a
"varname".

Value

A data.table named dtName that is an updated data definitions table

delColumns 35

Examples

Baseline data definitions

def <- defData(varname = "x1", formula = .5, dist = "binary")
def <- defData(def, varname = "x2", formula = .5, dist = "binary")
def <- defData(def, varname = "grp", formula = .5, dist = "binary")

Survival data definitions

sdef <- defSurv(
varname = "survTime", formula = "1.5*x1",
scale = "grp*50 + (1-grp)*25", shape = "grp*1 + (1-grp)*1.5"

)

sdef <- defSurv(sdef, varname = "censorTime", scale = 80, shape = 1)

sdef

Baseline data definitions

dtSurv <- genData(300, def)

Add survival times

dtSurv <- genSurv(dtSurv, sdef)

head(dtSurv)

delColumns Delete columns from existing data set

Description

Delete columns from existing data set

Usage

delColumns(dtOld, vars)

Arguments

dtOld Name of data table that is to be updated.

vars Vector of column names (as strings).

Value

An updated data.table without vars.

36 distributions

Examples

New data set

def <- defData(varname = "x", dist = "noZeroPoisson", formula = 7, id = "idnum")
def <- defData(def, varname = "xUni", dist = "uniformInt", formula = "x-3;x+3")

dt <- genData(10, def)
dt

Delete column

dt <- delColumns(dt, "x")
dt

distributions Distributions for Data Definitions

Description

This help file describes the distributions used for data creation in simstudy.

Arguments

formula Desired mean as a Number or an R expression for mean as a String. Variables
defined via defData() and variables within the parent environment (prefixed
with ..) can be used within the formula. Functions from the parent environment
can be used without a prefix.

variance Number. Default is 0.

link String identifying the link function to be used. Default is identity.

Details

For details about the statistical distributions please see stats::distributions, any non-statistical distri-
butions will be explained below. Required variables and expected pattern for each distribution can
be found in this table:

name formula format variance link
beta mean String or Number dispersion value identity or logit
binary probability for 1 String or Number NA identity, log, or logit
binomial probability of success String or Number number of trials identity, log, or logit
categorical probabilities p_1;p_2;..;p_n category labels: a;b;c , 50;130;20 identity or logit
custom name of function String arguments identity
exponential mean (lambda) String or Number NA identity or log
gamma mean String or Number dispersion value identity or log
mixture formula x_1 |p_1 + x_2|p_2 ... x_n| p_n NA NA
negBinomial mean String or Number dispersion value identity or log
nonrandom formula String or Number NA NA

gammaGetShapeRate 37

normal mean String or Number variance NA
noZeroPoisson mean String or Number NA identity or log
poisson mean String or Number NA identity or log
trtAssign ratio r_1;r_2;..;r_n stratification identity or nonbalanced
uniform range from;to NA NA
uniformInt range from;to NA NA

Mixture

The mixture distribution makes it possible to mix to previously defined distributions/variables.
Each variable that should be part of the new distribution x_1,...,X_n is assigned a probability
p_1,...,p_n. For more information see rdatagen.net.

Examples

ext_var <- 2.9
def <- defData(varname = "external", formula = "3 + log(..ext_var)", variance = .5)
def
genData(5, def)

gammaGetShapeRate Convert gamma mean and dispersion parameters to shape and rate
parameters

Description

Convert gamma mean and dispersion parameters to shape and rate parameters

Usage

gammaGetShapeRate(mean, dispersion)

Arguments

mean The mean of a gamma distribution

dispersion The dispersion parameter of a gamma distribution

Details

In simstudy, users specify the gamma distribution as a function of two parameters - a mean and
dispersion. In this case, the variance of the specified distribution is (mean^2)*dispersion. The base
R function rgamma uses the shape and rate parameters to specify the gamma distribution. This
function converts the mean and dispersion into the shape and rate.

Value

A list that includes the shape and rate parameters of the gamma distribution

https://www.rdatagen.net/post/adding-mixture-distributions-to-simstudy/

38 genCatFormula

Examples

set.seed(12345)
mean <- 5
dispersion <- 1.5
rs <- gammaGetShapeRate(mean, dispersion)
c(rs$shape, rs$rate)
vec <- rgamma(1000, shape = rs$shape, rate = rs$rate)
(estMoments <- c(mean(vec), var(vec)))
(theoryMoments <- c(mean, mean^2 * dispersion))
(theoryMoments <- c(rs$shape / rs$rate, rs$shape / rs$rate^2))

genCatFormula Generate Categorical Formula

Description

Create a semi-colon delimited string of probabilities to be used to define categorical data.

Usage

genCatFormula(..., n = 0)

Arguments

... one or more numeric values to be concatenated, delimited by ";".
n Number of probabilities (categories) to be generated - all with equal probability.

Details

The function accepts a number of probabilities or a value of n, but not both.

If probabilities are passed, the string that is returned depends on the nature of those probabilities.
If the sum of the probabilities is less than 1, an additional category is created with the probability
1 - sum(provided probabilities). If the sum of the probabilities is equal to 1, then the number of
categories is set to the number of probabilities provided. If the sum of the probabilities exceeds one
(and there is more than one probability), the probabilities are standardized by dividing by the sum
of the probabilities provided.

If n is provided, n probabilities are included in the string, each with a probability equal to 1/n.

Value

string with multinomial probabilities.

Examples

genCatFormula(0.25, 0.25, 0.50)
genCatFormula(1 / 3, 1 / 2)
genCatFormula(1, 2, 3)
genCatFormula(n = 5)

genCluster 39

genCluster Simulate clustered data

Description

Simulate data set that is one level down in a multilevel data context. The level "2" data set must
contain a field that specifies the number of individual records in a particular cluster.

Usage

genCluster(dtClust, cLevelVar, numIndsVar, level1ID, allLevel2 = TRUE)

Arguments

dtClust Name of existing data set that contains the level "2" data

cLevelVar Variable name (string) of cluster id in dtClust

numIndsVar Variable name (string) of number of observations per cluster in dtClust. Can
also be a single integer value that will be used for all clusters.

level1ID Name of id field in new level "1" data set

allLevel2 Indicator: if set to TRUE (default), the returned data set includes all of the Level
2 data columns. If FALSE, the returned data set only includes the Levels 1 and
2 ids.

Value

A simulated data table with level "1" data

Examples

gen.school <- defData(
varname = "s0", dist = "normal",
formula = 0, variance = 3, id = "idSchool"

)
gen.school <- defData(gen.school,

varname = "nClasses",
dist = "noZeroPoisson", formula = 3

)

dtSchool <- genData(3, gen.school) #'
dtSchool

dtClass <- genCluster(dtSchool,
cLevelVar = "idSchool",
numIndsVar = "nClasses", level1ID = "idClass"

)
dtClass

dtClass <- genCluster(dtSchool,

40 genCorData

cLevelVar = "idSchool",
numIndsVar = 3, level1ID = "idClass"

)
dtClass

genCorData Create correlated data

Description

Create correlated data

Usage

genCorData(
n,
mu,
sigma,
corMatrix = NULL,
rho,
corstr = "ind",
cnames = NULL,
idname = "id"

)

Arguments

n Number of observations

mu A vector of means. The length of mu must be nvars.

sigma Standard deviation of variables. If standard deviation differs for each variable,
enter as a vector with the same length as the mean vector mu. If the standard
deviation is constant across variables, as single value can be entered.

corMatrix Correlation matrix can be entered directly. It must be symmetrical and posi-
tive semi-definite. It is not a required field; if a matrix is not provided, then a
structure and correlation coefficient rho must be specified.

rho Correlation coefficient, -1 <= rho <= 1. Use if corMatrix is not provided.

corstr Correlation structure of the variance-covariance matrix defined by sigma and
rho. Options include "ind" for an independence structure, "cs" for a compound
symmetry structure, and "ar1" for an autoregressive structure.

cnames Explicit column names. A single string with names separated by commas. If no
string is provided, the default names will be V#, where # represents the column.

idname The name of the index id name. Defaults to "id."

Value

A data.table with n rows and the k + 1 columns, where k is the number of means in the vector mu.

genCorFlex 41

Examples

mu <- c(3, 8, 15)
sigma <- c(1, 2, 3)

corMat <- matrix(c(1, .2, .8, .2, 1, .6, .8, .6, 1), nrow = 3)

dtcor1 <- genCorData(1000, mu = mu, sigma = sigma, rho = .7, corstr = "cs")
dtcor2 <- genCorData(1000, mu = mu, sigma = sigma, corMatrix = corMat)

dtcor1
dtcor2

round(var(dtcor1[, .(V1, V2, V3)]), 3)
round(cor(dtcor1[, .(V1, V2, V3)]), 2)

round(var(dtcor2[, .(V1, V2, V3)]), 3)
round(cor(dtcor2[, .(V1, V2, V3)]), 2)

genCorFlex Create multivariate (correlated) data - for general distributions

Description

Create multivariate (correlated) data - for general distributions

Usage

genCorFlex(n, defs, rho = 0, tau = NULL, corstr = "cs", corMatrix = NULL)

Arguments

n Number of observations

defs Field definition table created by function ‘defData‘. All definitions must be
scalar. Definition specifies distribution, mean, and variance, with all caveats for
each of the distributions. (See defData).

rho Correlation coefficient, -1 <= rho <= 1. Use if corMatrix is not provided.

tau Correlation based on Kendall’s tau. If tau is specified, then it is used as the
correlation even if rho is specified. If tau is NULL, then the specified value of
rho is used, or rho defaults to 0.

corstr Correlation structure of the variance-covariance matrix defined by sigma and
rho. Options include "cs" for a compound symmetry structure and "ar1" for an
autoregressive structure. Defaults to "cs".

corMatrix Correlation matrix can be entered directly. It must be symmetrical and positive
semi-definite. It is not a required field; if a matrix is not provided, then a struc-
ture and correlation coefficient rho must be specified. This is only used if tau is
not specified.

42 genCorGen

Value

data.table with added column(s) of correlated data

Examples

Not run:
def <- defData(varname = "xNorm", formula = 0, variance = 4, dist = "normal")
def <- defData(def, varname = "xGamma1", formula = 15, variance = 2, dist = "gamma")
def <- defData(def, varname = "xBin", formula = 0.5, dist = "binary")
def <- defData(def, varname = "xUnif1", formula = "0;10", dist = "uniform")
def <- defData(def, varname = "xPois", formula = 15, dist = "poisson")
def <- defData(def, varname = "xUnif2", formula = "23;28", dist = "uniform")
def <- defData(def, varname = "xUnif3", formula = "100;150", dist = "uniform")
def <- defData(def, varname = "xGamma2", formula = 150, variance = 0.003, dist = "gamma")
def <- defData(def, varname = "xNegBin", formula = 5, variance = .8, dist = "negBinomial")

dt <- genCorFlex(1000, def, tau = 0.3, corstr = "cs")

cor(dt[, -"id"])
cor(dt[, -"id"], method = "kendall")
var(dt[, -"id"])
apply(dt[, -"id"], 2, mean)

End(Not run)

genCorGen Create multivariate (correlated) data - for general distributions

Description

Create multivariate (correlated) data - for general distributions

Usage

genCorGen(
n,
nvars,
params1,
params2 = NULL,
dist,
rho,
corstr,
corMatrix = NULL,
wide = FALSE,
cnames = NULL,
method = "copula",
idname = "id"

)

genCorGen 43

Arguments

n Number of observations

nvars Number of variables

params1 A single vector specifying the mean of the distribution. The vector is of length 1
if the mean is the same across all observations, otherwise the vector is of length
nvars. In the case of the uniform distribution the vector specifies the minimum.

params2 A single vector specifying a possible second parameter for the distribution. For
the normal distribution, this will be the variance; for the gamma distribution,
this will be the dispersion; and for the uniform distribution, this will be the max-
imum. The vector is of length 1 if the mean is the same across all observations,
otherwise the vector is of length nvars.

dist A string indicating "binary", "poisson" or "gamma", "normal", or "uniform".

rho Correlation coefficient, -1 <= rho <= 1. Use if corMatrix is not provided.

corstr Correlation structure of the variance-covariance matrix defined by sigma and
rho. Options include "cs" for a compound symmetry structure and "ar1" for an
autoregressive structure.

corMatrix Correlation matrix can be entered directly. It must be symmetrical and posi-
tive semi-definite. It is not a required field; if a matrix is not provided, then a
structure and correlation coefficient rho must be specified.

wide The layout of the returned file - if wide = TRUE, all new correlated variables
will be returned in a single record, if wide = FALSE, each new variable will be
its own record (i.e. the data will be in long form). Defaults to FALSE.

cnames Explicit column names. A single string with names separated by commas. If no
string is provided, the default names will be V#, where # represents the column.

method Two methods are available to generate correlated data. (1) "copula" uses the
multivariate Gaussian copula method that is applied to all other distributions;
this applies to all available distributions. (2) "ep" uses an algorithm developed
by Emrich and Piedmonte (1991).

idname Character value that specifies the name of the id variable.

Value

data.table with added column(s) of correlated data

References

Emrich LJ, Piedmonte MR. A Method for Generating High-Dimensional Multivariate Binary Vari-
ates. The American Statistician 1991;45:302-4.

Examples

set.seed(23432)
lambda <- c(8, 10, 12)

genCorGen(100, nvars = 3, params1 = lambda, dist = "poisson", rho = .7, corstr = "cs")
genCorGen(100, nvars = 3, params1 = 5, dist = "poisson", rho = .7, corstr = "cs")

44 genCorMat

genCorGen(100, nvars = 3, params1 = lambda, dist = "poisson", rho = .7, corstr = "cs", wide = TRUE)
genCorGen(100, nvars = 3, params1 = 5, dist = "poisson", rho = .7, corstr = "cs", wide = TRUE)

genCorGen(100,
nvars = 3, params1 = lambda, dist = "poisson", rho = .7, corstr = "cs",
cnames = "new_var"

)
genCorGen(100,

nvars = 3, params1 = lambda, dist = "poisson", rho = .7, corstr = "cs",
wide = TRUE, cnames = "a, b, c"

)

genCorMat Create a correlation matrix

Description

Create a correlation matrix

Usage

genCorMat(nvars, cors = NULL, rho = NULL, corstr = "cs", nclusters = 1)

Arguments

nvars number of rows and columns (i.e. number of variables) for correlation matrix.
It can be a scalar or vector (see details).

cors vector of correlations.

rho Correlation coefficient, -1 <= rho <= 1. Use if corMatrix is not provided. It can
be a scalar or vector (see details).

corstr Correlation structure. Options include "cs" for a compound symmetry structure,
"ar1" for an autoregressive structure of order 1, "arx" for an autoregressive struc-
ture that has a general decay pattern, and "structured" that imposes a prescribed
pattern between observation based on distance (see details).

nclusters An integer that indicates the number of matrices that will be generated.

Details

This function can generate correlation matrices randomly or deterministically, depending on the
combination of arguments provided. A single matrix will be generated when nclusters == 1 (the
default), and a list of matrices of matrices will be generated when nclusters > 1.

If the vector ‘cors‘ is specified with length ‘nvars - 1‘ then ‘corstr‘ must be "structured". If ‘cors‘
is specified with length ‘choose(nvars, 2)‘ then ‘corstr‘ should not be specified as "structured". In
this case the ‘cors‘ vector should be interpreted as the lower triangle of the correlation matrix, and
is specified by reading down the columns. For example, if CM is the correlation matrix and nvars
= 3, then CM[2,1] = CM[1,2] = cors[1], CM[3,1] = CM[1,3] = cors[2], and CM[3,2] = CM[2,3]
= cors[3].

genData 45

If the vector cors and rho are not specified, random correlation matrices are generated based on the
specified corstr. If the structure is "arx", then a random vector of length nvars - 1 is randomly
generated and sorted in descending order; the correlation matrix will be generated base on this set
of structured correlations. If the structure is not specified as "arx" then a random positive definite
of dimensions nvars x nvars with no structural assumptions is generated.

If cors is not specified but rho is specified, then a matrix with either a "cs" or "ar1" structure is
generated.

If nclusters > 1, nvars can be of length 1 or nclusters. If it is of length 1, each cluster will have
correlation matrices with the same dimension. Likewise, if nclusters > 1, rho can be of length
1 or nclusters. If length of rho is 1, each cluster will have correlation matrices with the same
autocorrelation.

Value

A single correlation matrix of size nvars x nvars, or a list of matrices of potentially different sizes
with length indicated by nclusters.

Examples

genCorMat(nvars = 3, cors = c(.3, -.2, .1))
genCorMat(nvars = 3)

genCorMat(nvars = 4, c(.3, -.2, .1, .2, .5, .2))
genCorMat(4)

genCorMat(nvars = 4, cors = c(.3, .2, .1), corstr = "structured")
genCorMat(nvars = 4, corstr = "arx")

genCorMat(nvars = 4, rho = .4, corstr = "cs")
genCorMat(nvars = 4, rho = .4, corstr = "ar1")

genCorMat(nvars = c(3, 2, 5), rho = c(.4, .8, .7), corstr = "ar1", nclusters = 3)

genData Calling function to simulate data

Description

Calling function to simulate data

Usage

genData(n, dtDefs = NULL, id = "id", envir = parent.frame())

46 genData

Arguments

n the number of observations required in the data set.

dtDefs name of definitions data.table/data.frame. If no definitions are provided a data
set with ids only is generated.

id The string defining the id of the record. Will override previously set id name
with a warning (unless the old value is ’id’). If the id attribute in dtDefs is
NULL will default to ’id’.

envir Environment the data definitions are evaluated in. Defaults to base::parent.frame.

Value

A data.table that contains the simulated data.

Examples

genData(5)
genData(5, id = "grpID")

def <- defData(
varname = "xNr", dist = "nonrandom", formula = 7,
id = "idnum"

)
def <- defData(def,

varname = "xUni", dist = "uniform",
formula = "10;20"

)
def <- defData(def,

varname = "xNorm", formula = "xNr + xUni * 2",
dist = "normal", variance = 8

)
def <- defData(def,

varname = "xPois", dist = "poisson",
formula = "xNr - 0.2 * xUni", link = "log"

)
def <- defData(def,

varname = "xCat", formula = "0.3;0.2;0.5",
dist = "categorical"

)
def <- defData(def,

varname = "xGamma", dist = "gamma", formula = "5+xCat",
variance = 1, link = "log"

)
def <- defData(def,

varname = "xBin", dist = "binary", formula = "-3 + xCat",
link = "logit"

)
def

genData(5, def)

genDataDensity 47

genDataDensity Generate data from a density defined by a vector of integers

Description

Data are generated from an a density defined by a vector of integers

Usage

genDataDensity(n, dataDist, varname, uselimits = FALSE, id = "id")

Arguments

n Number of samples to draw from the density.

dataDist Vector that defines the desired density

varname Name of variable name

uselimits Indicator to use minimum and maximum of input data vector as limits for sam-
pling. Defaults to FALSE, in which case a smoothed density that extends beyond
the limits is used.

id A string specifying the field that serves as the record id. The default field is "id".

Value

A data table with the generated data

Examples

data_dist <- data_dist <- c(1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 7, 7, 7, 8, 9, 10, 10)

genDataDensity(500, data_dist, varname = "x1", id = "id")
genDataDensity(500, data_dist, varname = "x1", uselimits = TRUE, id = "id")

genDummy Create dummy variables from a factor or integer variable

Description

Create dummy variables from a factor or integer variable

Usage

genDummy(dtName, varname, sep = ".", replace = FALSE)

48 genFactor

Arguments

dtName Data table with column

varname Name of factor

sep Character to be used in creating new name for dummy fields. Valid characters
include all letters and "_". Will default to ".". If an invalid character is provided,
it will be replaced by default.

replace If replace is set to TRUE (defaults to FALSE) the field referenced varname will
be removed.

Examples

First example:

def <- defData(varname = "cat", formula = ".2;.3;.5", dist = "categorical")
def <- defData(def, varname = "x", formula = 5, variance = 2)

dx <- genData(200, def)
dx

dx <- genFactor(dx, "cat", labels = c("one", "two", "three"), replace = TRUE)
dx <- genDummy(dx, varname = "fcat", sep = "_")

dx

Second example:

dx <- genData(15)
dx <- trtAssign(dtName = dx, 3, grpName = "arm")
dx <- genDummy(dx, varname = "arm")
dx

genFactor Create factor variable from an existing (non-double) variable

Description

Create factor variable from an existing (non-double) variable

Usage

genFactor(dtName, varname, labels = NULL, prefix = "f", replace = FALSE)

Arguments

dtName Data table with columns.

varname Name of field(s) to be converted.

genFormula 49

labels Factor level labels. If not provided, the generated factor levels will be used as
the labels. Can be a vector (if only one new factor or all factors have the same
labels) or a list of character vectors of the same length as varname.

prefix By default, the new field name will be a concatenation of "f" and the old field
name. A prefix string can be provided.

replace If replace is set to TRUE (defaults to FALSE) the field referenced varname will
be removed.

Examples

First example:

def <- defData(varname = "cat", formula = ".2;.3;.5", dist = "categorical")
def <- defData(def, varname = "x", formula = 5, variance = 2)

dx <- genData(200, def)
dx

dx <- genFactor(dx, "cat", labels = c("one", "two", "three"))
dx

Second example:

dx <- genData(10)
dx <- trtAssign(dtName = dx, 2, grpName = "studyArm")
dx <- genFactor(dx, varname = "studyArm", labels = c("control", "treatment"), prefix = "t_")
dx

genFormula Generate a linear formula

Description

Formulas for additive linear models can be generated with specified coefficient values and variable
names.

Usage

genFormula(coefs, vars)

Arguments

coefs A vector that contains the values of the coefficients. Coefficients can also be de-
fined as character for use with double dot notation. If length(coefs) == length(vars),
then no intercept is assumed. Otherwise, an intercept is assumed.

vars A vector of strings that specify the names of the explanatory variables in the
equation.

50 genMarkov

Value

A string that represents the desired formula

Examples

genFormula(c(.5, 2, 4), c("A", "B", "C"))
genFormula(c(.5, 2, 4), c("A", "B"))

genFormula(c(.5, "..x", 4), c("A", "B", "C"))
genFormula(c(.5, 2, "..z"), c("A", "B"))

changeX <- c(7, 10)
genFormula(c(.5, 2, changeX[1]), c("A", "B"))
genFormula(c(.5, 2, changeX[2]), c("A", "B"))
genFormula(c(.5, 2, changeX[2]), c("A", "B", "C"))

newForm <- genFormula(c(-2, 1), c("A"))

def1 <- defData(varname = "A", formula = 0, variance = 3, dist = "normal")
def1 <- defData(def1, varname = "B", formula = newForm, dist = "binary", link = "logit")

set.seed(2001)
dt <- genData(500, def1)
summary(glm(B ~ A, data = dt, family = binomial))

genMarkov Generate Markov chain

Description

Generate a Markov chain for n individuals or units by specifying a transition matrix.

Usage

genMarkov(
n,
transMat,
chainLen,
wide = FALSE,
id = "id",
pername = "period",
varname = "state",
widePrefix = "S",
trimvalue = NULL,
startProb = NULL

)

genMarkov 51

Arguments

n number of individual chains to generate

transMat Square transition matrix where the sum of each row must equal 1. The dimen-
sions of the matrix equal the number of possible states.

chainLen Length of each chain that will be generated for each chain; minimum chain
length is 2.

wide Logical variable (TRUE or FALSE) indicating whether the resulting data table
should be returned in wide or long format. The wide format includes all el-
ements of a chain on a single row; the long format includes each element of
a chain in its own row. The default is wide = FALSE, so the long format is
returned by default.

id Character string that represents name of "id" field. Defaults to "id".

pername Character string that represents the variable name of the chain sequence in the
long format. Defaults "period",

varname Character string that represents the variable name of the state in the long format.
Defaults to "state".

widePrefix Character string that represents the variable name prefix for the state fields in
the wide format. Defaults to "S".

trimvalue Integer value indicating end state. If trimvalue is not NULL, all records after the
first instance of state = trimvalue will be deleted.

startProb A string that contains the probability distribution of the starting state, separated
by a ";". Length of start probabilities must match the number of rows of the
transition matrix.

Value

A data table with n rows if in wide format, or n by chainLen rows if in long format.

Examples

Transition matrix P

P <- t(matrix(c(
0.7, 0.2, 0.1,
0.5, 0.3, 0.2,
0.0, 0.1, 0.9

), nrow = 3, ncol = 3))

d1 <- genMarkov(n = 10, transMat = P, chainLen = 5)
d2 <- genMarkov(n = 10, transMat = P, chainLen = 5, wide = TRUE)
d3 <- genMarkov(

n = 10, transMat = P, chainLen = 5,
pername = "seq", varname = "health",
trimvalue = 3

)

52 genMiss

genMiss Generate missing data

Description

Generate missing data

Usage

genMiss(
dtName,
missDefs,
idvars,
repeated = FALSE,
periodvar = "period",
envir = parent.frame()

)

Arguments

dtName Name of complete data set

missDefs Definitions of missingness

idvars Index variables

repeated Indicator for longitudinal data

periodvar Name of variable that contains period

envir parent.frame() by default, allows functionality with double-dot notation

Value

Missing data matrix indexed by idvars (and period if relevant)

See Also

defMiss, genObs

Examples

def1 <- defData(varname = "m", dist = "binary", formula = .5)
def1 <- defData(def1, "u", dist = "binary", formula = .5)
def1 <- defData(def1, "x1", dist = "normal", formula = "20*m + 20*u", variance = 2)
def1 <- defData(def1, "x2", dist = "normal", formula = "20*m + 20*u", variance = 2)
def1 <- defData(def1, "x3", dist = "normal", formula = "20*m + 20*u", variance = 2)

dtAct <- genData(1000, def1)

defM <- defMiss(varname = "x1", formula = .15, logit.link = FALSE)
defM <- defMiss(defM, varname = "x2", formula = ".05 + m * 0.25", logit.link = FALSE)

genMixFormula 53

defM <- defMiss(defM, varname = "x3", formula = ".05 + u * 0.25", logit.link = FALSE)
defM <- defMiss(defM, varname = "u", formula = 1, logit.link = FALSE) # not observed
defM

Generate missing data matrix

missMat <- genMiss(dtAct, defM, idvars = "id")
missMat

Generate observed data from actual data and missing data matrix

dtObs <- genObs(dtAct, missMat, idvars = "id")
dtObs

genMixFormula Generate Mixture Formula

Description

Generates a mixture formula from a vector of variable names and an optional vector of probabilities.

Usage

genMixFormula(vars, probs = NULL, varLength = NULL)

Arguments

vars Character vector/list of variable names.

probs Numeric vector/list of probabilities. Has to be same length as vars or NULL.
Probabilities will be normalized if the sum to > 1.

varLength If vars is of length one and varLength is set to any integer > 0, vars will be
interpreted as array of length varLength and all elements will used in sequence.

Value

The mixture formula as a string.

Examples

genMixFormula(c("a", "..b[..i]", "c"))
genMixFormula(c("a", "..b", "c"), c(.2, .5, .3))

Shorthand to use external vectors/lists
genMixFormula("..arr", varLength = 5)

54 genMultiFac

genMultiFac Generate multi-factorial data

Description

Generate multi-factorial data

Usage

genMultiFac(
nFactors,
each,
levels = 2,
coding = "dummy",
colNames = NULL,
idName = "id"

)

Arguments

nFactors Number of factors (columns) to generate.

each Number of replications for each combination of factors. Must be specified.

levels Vector or scalar. If a vector is specified, it must be the same length as nFatctors.
Each value of the vector represents the number of levels of each corresponding
factor. If a scalar is specified, each factor will have the same number of levels.
The default is 2 levels for each factor.

coding String value to specify if "dummy" or "effect" coding is used. Defaults to
"dummy".

colNames A vector of strings, with a length of nFactors. The strings represent the name
for each factor.

idName A string that specifies the id of the record. Defaults to "id".

Value

A data.table that contains the added simulated data. Each column contains an integer.

Examples

genMultiFac(nFactors = 2, each = 5)
genMultiFac(nFactors = 2, each = 4, levels = c(2, 3))
genMultiFac(

nFactors = 3, each = 1, coding = "effect",
colNames = c("Fac1", "Fac2", "Fac3"), id = "block"

)

genNthEvent 55

genNthEvent Generate event data using longitudinal data, and restrict output to
time until the nth event.

Description

Generate event data using longitudinal data, and restrict output to time until the nth event.

Usage

genNthEvent(dtName, defEvent, nEvents = 1, perName = "period", id = "id")

Arguments

dtName name of existing data table

defEvent data definition table (created with defDataAdd) that determines the event gener-
ating process.

nEvents maximum number of events that will be generated (the nth event).

perName variable name for period field. Defaults to "period"

id string representing name of the id field in table specified by dtName

Value

data.table that stops after "nEvents" are reached.

Examples

defD <- defData(
varname = "effect", formula = 0, variance = 1,
dist = "normal"

)
defE <- defDataAdd(

varname = "died", formula = "-2.5 + 0.3*period + effect",
dist = "binary", link = "logit"

)

d <- genData(1000, defD)
d <- addPeriods(d, 10)
dx <- genNthEvent(d, defEvent = defE, nEvents = 3)

56 genObs

genObs Create an observed data set that includes missing data

Description

Create an observed data set that includes missing data

Usage

genObs(dtName, dtMiss, idvars)

Arguments

dtName Name of complete data set
dtMiss Name of missing data matrix
idvars Index variables that cannot be missing

Value

A data table that represents observed data, including missing data

See Also

defMiss, genMiss

Examples

def1 <- defData(varname = "m", dist = "binary", formula = .5)
def1 <- defData(def1, "u", dist = "binary", formula = .5)
def1 <- defData(def1, "x1", dist = "normal", formula = "20*m + 20*u", variance = 2)
def1 <- defData(def1, "x2", dist = "normal", formula = "20*m + 20*u", variance = 2)
def1 <- defData(def1, "x3", dist = "normal", formula = "20*m + 20*u", variance = 2)

dtAct <- genData(1000, def1)

defM <- defMiss(varname = "x1", formula = .15, logit.link = FALSE)
defM <- defMiss(defM, varname = "x2", formula = ".05 + m * 0.25", logit.link = FALSE)
defM <- defMiss(defM, varname = "x3", formula = ".05 + u * 0.25", logit.link = FALSE)
defM <- defMiss(defM, varname = "u", formula = 1, logit.link = FALSE) # not observed
defM

Generate missing data matrix

missMat <- genMiss(dtAct, defM, idvars = "id")
missMat

Generate observed data from actual data and missing data matrix

dtObs <- genObs(dtAct, missMat, idvars = "id")
dtObs

genOrdCat 57

genOrdCat Generate ordinal categorical data

Description

Ordinal categorical data is added to an existing data set. Correlations can be added via correlation
matrix or rho and corstr.

Usage

genOrdCat(
dtName,
adjVar = NULL,
baseprobs,
catVar = "cat",
asFactor = TRUE,
idname = "id",
prefix = "grp",
rho = 0,
corstr = "ind",
corMatrix = NULL,
npVar = NULL,
npAdj = NULL

)

Arguments

dtName Name of complete data set

adjVar Adjustment variable name in dtName - determines logistic shift. This is speci-
fied assuming a cumulative logit link.

baseprobs Baseline probability expressed as a vector or matrix of probabilities. The values
(per row) must sum to <= 1. If rowSums(baseprobs) < 1, an additional cate-
gory is added with probability 1 - rowSums(baseprobs). The number of rows
represents the number of new categorical variables. The number of columns
represents the number of possible responses - if an particular category has fewer
possible responses, assign zero probability to non-relevant columns.

catVar Name of the new categorical field. Defaults to "cat". Can be a character vector
with a name for each new variable defined via baseprobs. Will be overridden
by prefix if more than one variable is defined and length(catVar) == 1.

asFactor If asFactor == TRUE (default), new field is returned as a factor. If asFactor ==
FALSE, new field is returned as an integer.

idname Name of the id column in dtName.

prefix A string. The names of the new variables will be a concatenation of the prefix
and a sequence of integers indicating the variable number.

rho Correlation coefficient, -1 < rho < 1. Use if corMatrix is not provided.

58 genOrdCat

corstr Correlation structure of the variance-covariance matrix defined by sigma and
rho. Options include "ind" for an independence structure, "cs" for a compound
symmetry structure, and "ar1" for an autoregressive structure.

corMatrix Correlation matrix can be entered directly. It must be symmetrical and positive
definite. It is not a required field; if a matrix is not provided, then a structure and
correlation coefficient rho must be specified. (The matrix created via rho and
corstr must also be positive definite.)

npVar Vector of variable names that indicate which variables are to violate the propor-
tionality assumption.

npAdj Matrix with a row for each npVar and a column for each category. Each value
represents the deviation from the proportional odds assumption on the logistic
scale.

Value

Original data.table with added categorical field.

Examples

Ordinal Categorical Data ----

def1 <- defData(
varname = "male",
formula = 0.45, dist = "binary", id = "idG"

)
def1 <- defData(def1,

varname = "z",
formula = "1.2*male", dist = "nonrandom"

)
def1

Generate data

set.seed(20)

dx <- genData(1000, def1)

probs <- c(0.40, 0.25, 0.15)

dx <- genOrdCat(dx,
adjVar = "z", idname = "idG", baseprobs = probs,
catVar = "grp"

)
dx

Correlated Ordinal Categorical Data ----

baseprobs <- matrix(c(
0.2, 0.1, 0.1, 0.6,
0.7, 0.2, 0.1, 0,
0.5, 0.2, 0.3, 0,

genSpline 59

0.4, 0.2, 0.4, 0,
0.6, 0.2, 0.2, 0

),
nrow = 5, byrow = TRUE
)

set.seed(333)
dT <- genData(1000)

dX <- genOrdCat(dT,
adjVar = NULL, baseprobs = baseprobs,
prefix = "q", rho = .125, corstr = "cs", asFactor = FALSE

)
dX

dM <- data.table::melt(dX, id.vars = "id")
dProp <- dM[, prop.table(table(value)), by = variable]
dProp[, response := c(1:4, 1:3, 1:3, 1:3, 1:3)]

data.table::dcast(dProp, variable ~ response,
value.var = "V1", fill = 0

)

proportional odds assumption violated

d1 <- defData(varname = "rx", formula = "1;1", dist = "trtAssign")
d1 <- defData(d1, varname = "z", formula = "0 - 1.2*rx", dist = "nonrandom")

dd <- genData(1000, d1)

baseprobs <- c(.4, .3, .2, .1)
npAdj <- c(0, 1, 0, 0)

dn <- genOrdCat(
dtName = dd, adjVar = "z",
baseprobs = baseprobs,
npVar = "rx", npAdj = npAdj

)

genSpline Generate spline curves

Description

Generate spline curves

Usage

genSpline(

60 genSpline

dt,
newvar,
predictor,
theta,
knots = c(0.25, 0.5, 0.75),
degree = 3,
newrange = NULL,
noise.var = 0

)

Arguments

dt data.table that will be modified

newvar Name of new variable to be created

predictor Name of field in old data.table that is predicting new value

theta A vector or matrix of values between 0 and 1. Each column of the matrix rep-
resents the weights/coefficients that will be applied to the basis functions de-
termined by the knots and degree. Each column of theta represents a separate
spline curve.

knots A vector of values between 0 and 1, specifying quantile cut-points for splines.
Defaults to c(0.25, 0.50, 0.75).

degree Integer specifying polynomial degree of curvature.

newrange Range of the spline function , specified as a string with two values separated
by a semi-colon. The first value represents the minimum, and the second value
represents the maximum. Defaults to NULL, which sets the range to be between
0 and 1.

noise.var Add to normally distributed noise to observation - where mean is value of spline
curve.

Value

A modified data.table with an added column named newvar.

Examples

ddef <- defData(varname = "age", formula = "0;1", dist = "uniform")

theta1 <- c(0.1, 0.8, 0.6, 0.4, 0.6, 0.9, 0.9)
knots <- c(0.25, 0.5, 0.75)

viewSplines(knots = knots, theta = theta1, degree = 3)

set.seed(234)
dt <- genData(1000, ddef)

dt <- genSpline(
dt = dt, newvar = "weight",
predictor = "age", theta = theta1,

genSurv 61

knots = knots, degree = 3,
noise.var = .025

)

dt

genSurv Generate survival data

Description

Survival data is added to an existing data set.

Usage

genSurv(
dtName,
survDefs,
digits = 3,
timeName = NULL,
censorName = NULL,
eventName = "event",
typeName = "type",
keepEvents = FALSE,
idName = "id",
envir = parent.frame()

)

Arguments

dtName Name of data set

survDefs Definitions of survival

digits Number of digits for rounding

timeName A string to indicate the name of a combined competing risk time-to-event out-
come that reflects the minimum observed value of all time-to-event outcomes.
Defaults to NULL, indicating that each time-to-event outcome will be included
in dataset.

censorName The name of a time to event variable that is the censoring variable. Will be
ignored if timeName is NULL.

eventName The name of the new numeric/integer column representing the competing event
outcomes. If censorName is specified, the integer value for that event will be 0.
Defaults to "event", but will be ignored if timeName is NULL.

typeName The name of the new character column that will indicate the event type. The
type will be the unique variable names in survDefs. Defaults to "type", but will
be ignored if timeName is NULL.

62 genSynthetic

keepEvents Indicator to retain original "events" columns. Defaults to FALSE.

idName Name of id field in existing data set.

envir Optional environment, defaults to current calling environment.

Value

Original data table with survival time

Examples

Baseline data definitions

def <- defData(varname = "x1", formula = .5, dist = "binary")
def <- defData(def, varname = "x2", formula = .5, dist = "binary")
def <- defData(def, varname = "grp", formula = .5, dist = "binary")

Survival data definitions

sdef <- defSurv(
varname = "survTime", formula = "1.5*x1",
scale = "grp*50 + (1-grp)*25", shape = "grp*1 + (1-grp)*1.5"

)

sdef <- defSurv(sdef, varname = "censorTime", scale = 80, shape = 1)

sdef

Baseline data definitions

dtSurv <- genData(300, def)

Add survival times

dtSurv <- genSurv(dtSurv, sdef)

head(dtSurv)

genSynthetic Generate synthetic data

Description

Synthetic data is generated from an existing data set

Usage

genSynthetic(dtFrom, n = nrow(dtFrom), vars = NULL, id = "id")

iccRE 63

Arguments

dtFrom Data table that contains the source data

n Number of samples to draw from the source data. The default is number of
records that are in the source data file.

vars A vector of string names specifying the fields that will be sampled. The default
is that all variables will be selected.

id A string specifying the field that serves as the record id. The default field is "id".

Value

A data table with the generated data

Examples

Create fake "real" data set

d <- defData(varname = "a", formula = 3, variance = 1, dist = "normal")
d <- defData(d, varname = "b", formula = 5, dist = "poisson")
d <- defData(d, varname = "c", formula = 0.3, dist = "binary")
d <- defData(d, varname = "d", formula = "a + b + 3*c", variance = 2, dist = "normal")

A <- genData(100, d, id = "index")

Create synthetic data set from "observed" data set A:

def <- defDataAdd(varname = "x", formula = "2*b + 2*d", variance = 2)

S <- genSynthetic(dtFrom = A, n = 120, vars = c("b", "d"), id = "index")
S <- addColumns(def, S)

iccRE Generate variance for random effects that produce desired intra-class
coefficients (ICCs) for clustered data.

Description

Generate variance for random effects that produce desired intra-class coefficients (ICCs) for clus-
tered data.

Usage

iccRE(ICC, dist, varTotal = NULL, varWithin = NULL, lambda = NULL, disp = NULL)

64 iccRE

Arguments

ICC Vector of values between 0 and 1 that represent the target ICC levels

dist The distribution that describes the outcome data at the individual level. Possible
distributions include "normal", "binary", "poisson", or "gamma"

varTotal Numeric value that represents the total variation for a normally distributed model.
If "normal" distribution is specified, either varTotal or varWithin must be speci-
fied, but not both.

varWithin Numeric value that represents the variation within a cluster for a normally dis-
tributed model. If "normal" distribution is specified, either varTotal or varWithin
must be specified, but not both.

lambda Numeric value that represents the grand mean. Must be specified when distribu-
tion is "poisson" or "negative binomial".

disp Numeric value that represents the dispersion parameter that is used to define a
gamma or negative binomial distribution with a log link. Must be specified when
distribution is "gamma".

Value

A vector of values that represents the variances of random effects at the cluster level that correspond
to the ICC vector.

References

Nakagawa, Shinichi, and Holger Schielzeth. "A general and simple method for obtaining R2 from
generalized linear mixed-effects models." Methods in ecology and evolution 4, no. 2 (2013): 133-
142.

Examples

targetICC <- seq(0.05, 0.20, by = .01)

iccRE(targetICC, "poisson", lambda = 30)

iccRE(targetICC, "binary")

iccRE(targetICC, "normal", varTotal = 100)
iccRE(targetICC, "normal", varWithin = 100)

iccRE(targetICC, "gamma", disp = .5)

iccRE(targetICC, "negBinomial", lambda = 40, disp = .5)

logisticCoefs 65

logisticCoefs Determine intercept, treatment/exposure and covariate coefficients
that can be used for binary data generation with a logit link and a
set of covariates

Description

This is an implementation of an iterative bisection procedure that can be used to determine coeffi-
cient values for a target population prevalence as well as a target risk ratio, risk difference, or AUC.
These coefficients can be used in a subsequent data generation process to simulate data with these
desire characteristics.

Usage

logisticCoefs(
defCovar,
coefs,
popPrev,
rr = NULL,
rd = NULL,
auc = NULL,
tolerance = 0.001,
sampleSize = 1e+05,
trtName = "A"

)

Arguments

defCovar A definition table for the covariates in the underlying population. This tables
specifies the distribution of the covariates.

coefs A vector of coefficients that reflect the relationship between each of the covari-
ates and the log-odds of the outcome.

popPrev The target population prevalence of the outcome. A value between 0 and 1.

rr The target risk ratio, which must be a value between 0 and 1/popPrev. Defaults
to NULL.

rd The target risk difference, which must be between -(popPrev) and (1 - popPrev).
Defaults to NULL

auc The target AUC, which must be a value between 0.5 and 1.0 . Defaults to NULL.

tolerance The minimum stopping distance between the adjusted low and high endpoints.
Defaults to 0.001.

sampleSize The number of units to generate for the bisection algorithm. The default is
1e+05. To get a reliable estimate, the value should be no smaller than the default,
though larger values can be used, though computing time will increase.

trtName If either a risk ratio or risk difference is the target statistic, a treatment/exposure
variable name can be provided. Defaults to "A".

66 mergeData

Details

If no specific target statistic is specified, then only the intercept is returned along with the original
coefficients. Only one target statistic (risk ratio, risk difference or AUC) can be specified with a
single function call; in all three cases, a target prevalence is still required.

Value

A vector of parameters including the intercept and covariate coefficients for the logistic model data
generating process.

References

Austin, Peter C. "The iterative bisection procedure: a useful tool for determining parameter values
in data-generating processes in Monte Carlo simulations." BMC Medical Research Methodology
23, no. 1 (2023): 1-10.

Examples

Not run:
d1 <- defData(varname = "x1", formula = 0, variance = 1)
d1 <- defData(d1, varname = "b1", formula = 0.5, dist = "binary")

coefs <- log(c(1.2, 0.8))

logisticCoefs(d1, coefs, popPrev = 0.20)
logisticCoefs(d1, coefs, popPrev = 0.20, rr = 1.50, trtName = "rx")
logisticCoefs(d1, coefs, popPrev = 0.20, rd = 0.30, trtName = "rx")
logisticCoefs(d1, coefs, popPrev = 0.20, auc = 0.80)

End(Not run)

mergeData Merge two data tables

Description

Merge two data tables

Usage

mergeData(dt1, dt2, idvars)

Arguments

dt1 Name of first data.table

dt2 Name of second data.table

idvars Vector of string names to merge on

negbinomGetSizeProb 67

Value

A new data table that merges dt2 with dt1

Examples

def1 <- defData(varname = "x", formula = 0, variance = 1)
def1 <- defData(varname = "xcat", formula = ".3;.2", dist = "categorical")

def2 <- defData(varname = "yBin", formula = 0.5, dist = "binary", id = "xcat")
def2 <- defData(def2, varname = "yNorm", formula = 5, variance = 2)

dt1 <- genData(20, def1)
dt2 <- genData(3, def2)

dtMerge <- mergeData(dt1, dt2, "xcat")
dtMerge

negbinomGetSizeProb Convert negative binomial mean and dispersion parameters to size
and prob parameters

Description

Convert negative binomial mean and dispersion parameters to size and prob parameters

Usage

negbinomGetSizeProb(mean, dispersion)

Arguments

mean The mean of a gamma distribution

dispersion The dispersion parameter of a gamma distribution

Details

In simstudy, users specify the negative binomial distribution as a function of two parameters - a
mean and dispersion. In this case, the variance of the specified distribution is mean + (mean^2)*dispersion.
The base R function rnbinom uses the size and prob parameters to specify the negative binomial
distribution. This function converts the mean and dispersion into the size and probability parame-
ters.

Value

A list that includes the size and prob parameters of the neg binom distribution

68 survGetParams

Examples

set.seed(12345)
mean <- 5
dispersion <- 0.5
sp <- negbinomGetSizeProb(mean, dispersion)
c(sp$size, sp$prob)
vec <- rnbinom(1000, size = sp$size, prob = sp$prob)
(estMoments <- c(mean(vec), var(vec)))
(theoryMoments <- c(mean, mean + mean^2 * dispersion))
(theoryMoments <- c(sp$size * (1 - sp$prob) / sp$prob, sp$size * (1 - sp$prob) / sp$prob^2))

simstudy-deprecated Deprecated functions in simstudy

Description

These functions are provided for compatibility with older versions of simstudy only, and will be
defunct in the future.

Details

• genCorOrdCat: This function is deprecated, and will be removed in the future. Use genOrdCat
with asFactor = FALSE instead.

• catProbs: This function is deprecated, and will be removed in the future. Use genCatFormula
with the same functionality instead.

survGetParams Get survival curve parameters

Description

Get survival curve parameters

Usage

survGetParams(points)

Arguments

points A list of two-element vectors specifying the desired time and probability pairs
that define the desired survival curve

Value

A vector of parameters that define the survival curve optimized for the target points. The first
element of the vector represents the "f" parameter and the second element represents the "shape"
parameter.

survParamPlot 69

Examples

points <- list(c(60, 0.90), c(100, .75), c(200, .25), c(250, .10))
survGetParams(points)

survParamPlot Plot survival curves

Description

Plot survival curves

Usage

survParamPlot(formula, shape, points = NULL, n = 100, scale = 1, limits = NULL)

Arguments

formula This is the "formula" parameter of the Weibull-based survival curve that can be
used to define the scale of the distribution.

shape The parameter that defines the shape of the distribution.

points An optional list of two-element vectors specifying the desired time and proba-
bility pairs that define the desired survival curve. If no list is specified then the
plot will not include any points.

n The number of points along the curve that will be used to define the line. De-
faults to 100.

scale An optional scale parameter that defaults to 1. If the value is 1, the scale of the
distribution is determined entirely by the argument "f".

limits A vector of length 2 that specifies x-axis limits for the plot. The default is NULL,
in which case no limits are imposed.

Value

A ggplot of the survival curve defined by the specified parameters. If the argument points is speci-
fied, the plot will include them

Examples

points <- list(c(60, 0.90), c(100, .75), c(200, .25), c(250, .10))
r <- survGetParams(points)
survParamPlot(r[1], r[2])
survParamPlot(r[1], r[2], points = points)
survParamPlot(r[1], r[2], points = points, limits = c(0, 100))

70 trimData

trimData Trim longitudinal data file once an event has occurred

Description

Trim longitudinal data file once an event has occurred

Usage

trimData(dtOld, seqvar, eventvar, idvar = "id")

Arguments

dtOld name of data table to be trimmed

seqvar string referencing column that indexes the sequence or period

eventvar string referencing event data column

idvar string referencing id column

Value

an updated data.table removes all rows following the first event for each individual

Examples

eDef <- defDataAdd(varname = "e", formula = "u==4", dist = "nonrandom")

P <- t(matrix(c(
0.4, 0.3, 0.2, 0.1,
0.0, 0.4, 0.3, 0.3,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0

),
nrow = 4
))

dp <- genMarkov(
n = 100, transMat = P,
chainLen = 8, id = "id",
pername = "period",
varname = "u"

)

dp <- addColumns(eDef, dp)
dp <- trimData(dp, seqvar = "period", eventvar = "e", idvar = "id")

dp

trtAssign 71

trtAssign Assign treatment

Description

Assign treatment

Usage

trtAssign(
dtName,
nTrt = 2,
balanced = TRUE,
strata = NULL,
grpName = "trtGrp",
ratio = NULL

)

Arguments

dtName data table

nTrt number of treatment groups

balanced indicator for treatment assignment process

strata vector of strings representing stratifying variables

grpName string representing variable name for treatment or exposure group

ratio vector of values indicating relative proportion of group assignment

Value

An integer (group) ranging from 1 to length of the probability vector

See Also

trtObserve

Examples

dt <- genData(15)

dt1 <- trtAssign(dt, nTrt = 3, balanced = TRUE)
dt1[, .N, keyby = trtGrp]

dt2 <- trtAssign(dt, nTrt = 3, balanced = FALSE)
dt2[, .N, keyby = trtGrp]

def <- defData(varname = "male", formula = .4, dist = "binary")
dt <- genData(1000, def)

72 trtObserve

dt

dt3 <- trtAssign(dt, nTrt = 5, strata = "male", balanced = TRUE, grpName = "Group")
dt3
dt3[, .N, keyby = .(male, Group)]
dt3[, .N, keyby = .(Group)]

dt4 <- trtAssign(dt, nTrt = 5, strata = "male", balanced = FALSE, grpName = "Group")
dt4[, .N, keyby = .(male, Group)]
dt4[, .N, keyby = .(Group)]

dt5 <- trtAssign(dt, nTrt = 5, balanced = TRUE, grpName = "Group")
dt5[, .N, keyby = .(male, Group)]
dt5[, .N, keyby = .(Group)]

dt6 <- trtAssign(dt, nTrt = 3, ratio = c(1, 2, 2), grpName = "Group")
dt6[, .N, keyby = .(Group)]

trtObserve Observed exposure or treatment

Description

Observed exposure or treatment

Usage

trtObserve(dt, formulas, logit.link = FALSE, grpName = "trtGrp")

Arguments

dt data table

formulas collection of formulas that determine probabilities

logit.link indicator that specifies link. If TRUE, then logit link is used. If FALSE, the
identity link is used.

grpName character string representing name of treatment/exposure group variable

Value

An integer (group) ranging from 1 to length of the probability vector

See Also

trtAssign

trtStepWedge 73

Examples

def <- defData(varname = "male", dist = "binary", formula = .5, id = "cid")
def <- defData(def, varname = "over65", dist = "binary", formula = "-1.7 + .8*male", link = "logit")
def <- defData(def, varname = "baseDBP", dist = "normal", formula = 70, variance = 40)

dtstudy <- genData(1000, def)
dtstudy

formula1 <- c("-2 + 2*male - .5*over65", "-1 + 2*male + .5*over65")
dtObs <- trtObserve(dtstudy, formulas = formula1, logit.link = TRUE, grpName = "exposure")
dtObs

Check actual distributions

dtObs[, .(pctMale = round(mean(male), 2)), keyby = exposure]
dtObs[, .(pctMale = round(mean(over65), 2)), keyby = exposure]

dtSum <- dtObs[, .N, keyby = .(male, over65, exposure)]
dtSum[, grpPct := round(N / sum(N), 2), keyby = .(male, over65)]
dtSum

trtStepWedge Assign treatment for stepped-wedge design

Description

Assign treatment for stepped-wedge design

Usage

trtStepWedge(
dtName,
clustID,
nWaves,
lenWaves,
startPer,
perName = "period",
grpName = "rx",
lag = 0,
xrName = "xr"

)

Arguments

dtName data table

clustID string representing name of column of cluster level ids

nWaves number of treatment waves

74 updateDef

lenWaves the number of periods between waves

startPer the starting period of the first wave

perName string representing name of column of time periods

grpName string representing variable name for treatment or exposure group

lag integer representing length of transition period

xrName string representing name of the field that indicates whether the cluster status is
in transition status

Value

A data.table with the added treatment assignment

See Also

trtObserve trtAssign

Examples

defc <- defData(
varname = "ceffect", formula = 0, variance = 0.10,
dist = "normal", id = "cluster"

)
defc <- defData(defc, "m", formula = 10, dist = "nonrandom")

Will generate 3 waves of 4 clusters each - starting 2, 5, and 8

dc <- genData(12, defc)
dp <- addPeriods(dc, 12, "cluster")
dp <- trtStepWedge(dp, "cluster",

nWaves = 3,
lenWaves = 3, startPer = 2

)
dp

dp <- addPeriods(dc, 12, "cluster")
dp <- trtStepWedge(dp, "cluster",

nWaves = 2,
lenWaves = 1, startPer = 4, lag = 3

)
dp

updateDef Update definition table

Description

Updates row definition table created by function defData or defRead. (For tables created using
defDataAdd and defReadAdd use updateDefAdd.) Does not modify in-place.

updateDef 75

Usage

updateDef(
dtDefs,
changevar,
newformula = NULL,
newvariance = NULL,
newdist = NULL,
newlink = NULL,
remove = FALSE

)

Arguments

dtDefs Definition table that will be modified

changevar Name of field definition that will be changed

newformula New formula definition (defaults to NULL)

newvariance New variance specification (defaults to NULL)

newdist New distribution definition (defaults to NULL)

newlink New link specification (defaults to NULL)

remove If set to TRUE, remove ‘changevar‘from definition (defaults to FALSE).

Value

The updated data definition table.

Examples

Example 1

defs <- defData(varname = "x", formula = 0, variance = 3, dist = "normal")
defs <- defData(defs, varname = "y", formula = "2 + 3*x", variance = 1, dist = "normal")
defs <- defData(defs, varname = "z", formula = "4 + 3*x - 2*y", variance = 1, dist = "normal")

defs

updateDef(dtDefs = defs, changevar = "y", newformula = "x + 5", newvariance = 2)
updateDef(dtDefs = defs, changevar = "z", newdist = "poisson", newlink = "log")

Example 2

defs <- defData(varname = "w", formula = 0, variance = 3, dist = "normal")
defs <- defData(defs, varname = "x", formula = "1 + w", variance = 1, dist = "normal")
defs <- defData(defs, varname = "z", formula = 4, variance = 1, dist = "normal")

defs

updateDef(dtDefs = defs, changevar = "x", remove = TRUE)
updateDef(dtDefs = defs, changevar = "z", remove = TRUE)

76 updateDefAdd

No changes to original definition:
defs

updateDefAdd Update definition table

Description

Updates row definition table created by functions defDataAdd and defReadAdd. (For tables created
using defData or defRead use updateDef.)

Usage

updateDefAdd(
dtDefs,
changevar,
newformula = NULL,
newvariance = NULL,
newdist = NULL,
newlink = NULL,
remove = FALSE

)

Arguments

dtDefs Definition table that will be modified

changevar Name of field definition that will be changed

newformula New formula definition (defaults to NULL)

newvariance New variance specification (defaults to NULL)

newdist New distribution definition (defaults to NULL)

newlink New link specification (defaults to NULL)

remove If set to TRUE, remove definition (defaults to FALSE)

Value

A string that represents the desired formula

Examples

Define original data

defs <- defData(varname = "w", formula = 0, variance = 3, dist = "normal")
defs <- defData(defs, varname = "x", formula = "1 + w", variance = 1, dist = "normal")
defs <- defData(defs, varname = "z", formula = 4, variance = 1, dist = "normal")

Define additional columns

viewBasis 77

defsA <- defDataAdd(varname = "a", formula = "w + x + z", variance = 2, dist = "normal")

set.seed(2001)
dt <- genData(10, defs)
dt <- addColumns(defsA, dt)
dt

Modify definition of additional column

defsA <- updateDefAdd(dtDefs = defsA, changevar = "a", newformula = "w+z", newvariance = 1)

set.seed(2001)
dt <- genData(10, defs)
dt <- addColumns(defsA, dt)
dt

viewBasis Plot basis spline functions

Description

Plot basis spline functions

Usage

viewBasis(knots, degree)

Arguments

knots A vector of values between 0 and 1, specifying cut-points for splines

degree Integer specifying degree of curvature.

Value

A ggplot object that contains a plot of the basis functions. In total, there will be length(knots) +
degree + 1 functions plotted.

Examples

knots <- c(0.25, 0.50, 0.75)
viewBasis(knots, degree = 1)

knots <- c(0.25, 0.50, 0.75)
viewBasis(knots, degree = 2)

knots <- c(0.25, 0.50, 0.75)
viewBasis(knots, degree = 3)

78 viewSplines

viewSplines Plot spline curves

Description

Plot spline curves

Usage

viewSplines(knots, degree, theta)

Arguments

knots A vector of values between 0 and 1, specifying cut-points for splines

degree Integer specifying degree of curvature.

theta A vector or matrix of values between 0 and 1. Each column of the matrix rep-
resents the weights/coefficients that will be applied to the basis functions de-
termined by the knots and degree. Each column of theta represents a separate
spline curve.

Value

A ggplot object that contains a plot of the spline curves. The number of spline curves in the plot
will equal the number of columns in the matrix (or it will equal 1 if theta is a vector).

Examples

knots <- c(0.25, 0.5, 0.75)
theta1 <- c(0.1, 0.8, 0.4, 0.9, 0.2, 1.0)

viewSplines(knots, degree = 2, theta1)

theta2 <- matrix(c(
0.1, 0.2, 0.4, 0.9, 0.2, 0.3,
0.1, 0.3, 0.3, 0.8, 1.0, 0.9,
0.1, 0.4, 0.3, 0.8, 0.7, 0.5,
0.1, 0.9, 0.8, 0.2, 0.1, 0.6

),
ncol = 4
)

viewSplines(knots, degree = 2, theta2)

Index

∗ categorical
genOrdCat, 57

∗ condition
addCondition, 5
defCondition, 23
defRead, 28

∗ correlated
addCorData, 6
addCorFlex, 8
addCorGen, 10
blockDecayMat, 19
blockExchangeMat, 21
genCorData, 40
genCorFlex, 41
genCorGen, 42
genCorMat, 44
genOrdCat, 57

∗ define_data
defCondition, 23
defData, 24
defDataAdd, 26
defRead, 28
defReadAdd, 29
defReadCond, 30
defRepeat, 31
defRepeatAdd, 33
defSurv, 34
updateDef, 74
updateDefAdd, 76

∗ generate_data
addColumns, 3
addCondition, 5
addDataDensity, 12
addMarkov, 13
addMultiFac, 15
addSynthetic, 17
genData, 45
genDataDensity, 47
genDummy, 47

genFactor, 48
genFormula, 49
genMarkov, 50
genMultiFac, 54
genOrdCat, 57
genSpline, 59
genSurv, 61
genSynthetic, 62

∗ group_data
addPeriods, 16
genCluster, 39
genNthEvent, 55
trtAssign, 71
trtObserve, 72
trtStepWedge, 73

∗ missing
defMiss, 27
genMiss, 52
genObs, 56

∗ splines
genSpline, 59
viewBasis, 77
viewSplines, 78

∗ utility
addCompRisk, 4
betaGetShapes, 18
delColumns, 35
gammaGetShapeRate, 37
genCatFormula, 38
genMixFormula, 53
iccRE, 63
logisticCoefs, 65
mergeData, 66
negbinomGetSizeProb, 67
survGetParams, 68
survParamPlot, 69
trimData, 70
updateDef, 74
updateDefAdd, 76

79

80 INDEX

viewBasis, 77
viewSplines, 78

addColumns, 3
addCompRisk, 4
addCondition, 5
addCorData, 6
addCorFlex, 8
addCorGen, 10, 21, 22
addDataDensity, 12
addMarkov, 13
addMultiFac, 15
addPeriods, 16
addSynthetic, 17

base::parent.frame, 3, 5, 9, 46
beta (distributions), 36
betaGetShapes, 18
binary (distributions), 36
binomial (distributions), 36
blockDecayMat, 19, 22
blockExchangeMat, 21, 21

categorical (distributions), 36
catProbs, 68

defCondition, 23
defData, 24
defData(), 36
defDataAdd, 26
defMiss, 27, 52, 56
defRead, 28
defReadAdd, 29
defReadCond, 30
defRepeat, 31
defRepeatAdd, 33
defSurv, 34
delColumns, 35
distributions, 23, 25, 36

exponential (distributions), 36

gamma (distributions), 36
gammaGetShapeRate, 37
genCatFormula, 38, 68
genCluster, 39
genCorData, 40
genCorFlex, 41
genCorGen, 42
genCorMat, 44

genCorOrdCat, 68
genData, 45
genDataDensity, 47
genDummy, 47
genFactor, 48
genFormula, 49
genMarkov, 50
genMiss, 27, 52, 56
genMixFormula, 53
genMultiFac, 54
genNthEvent, 55
genObs, 27, 52, 56
genOrdCat, 57, 68
genSpline, 59
genSurv, 61
genSynthetic, 62

iccRE, 63

logisticCoefs, 65

mergeData, 66
mixture (distributions), 36

negbinomGetSizeProb, 67
negBinomial (distributions), 36
nonrandom (distributions), 36
normal (distributions), 36
noZeroPoisson (distributions), 36

poisson (distributions), 36

simstudy-deprecated, 68
stats::distributions, 36
survGetParams, 68
survParamPlot, 69

trimData, 70
trtAssign, 71, 72, 74
trtObserve, 71, 72, 74
trtStepWedge, 73

uniform (distributions), 36
updateDef, 74
updateDefAdd, 76

viewBasis, 77
viewSplines, 78

	addColumns
	addCompRisk
	addCondition
	addCorData
	addCorFlex
	addCorGen
	addDataDensity
	addMarkov
	addMultiFac
	addPeriods
	addSynthetic
	betaGetShapes
	blockDecayMat
	blockExchangeMat
	defCondition
	defData
	defDataAdd
	defMiss
	defRead
	defReadAdd
	defReadCond
	defRepeat
	defRepeatAdd
	defSurv
	delColumns
	distributions
	gammaGetShapeRate
	genCatFormula
	genCluster
	genCorData
	genCorFlex
	genCorGen
	genCorMat
	genData
	genDataDensity
	genDummy
	genFactor
	genFormula
	genMarkov
	genMiss
	genMixFormula
	genMultiFac
	genNthEvent
	genObs
	genOrdCat
	genSpline
	genSurv
	genSynthetic
	iccRE
	logisticCoefs
	mergeData
	negbinomGetSizeProb
	simstudy-deprecated
	survGetParams
	survParamPlot
	trimData
	trtAssign
	trtObserve
	trtStepWedge
	updateDef
	updateDefAdd
	viewBasis
	viewSplines
	Index

